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PREFACE

This handy book presents more than 2000 needed formulas
for civil engineers to help them in the design office, in the
field, and on a variety of construction jobs, anywhere in the
world. These formulas are also useful to design drafters,
structural engineers, bridge engineers, foundation builders,
field engineers, professional-engineer license examination
candidates, concrete specialists, timber-structure builders,
and students in a variety of civil engineering pursuits.

The book presents formulas needed in 12 different spe-
cialized branches of civil engineering—beams and girders,
columns, piles and piling, concrete structures, timber engi-
neering, surveying, soils and earthwork, building struc-
tures, bridges, suspension cables, highways and roads, and
hydraulics and open-channel flow. Key formulas are pre-
sented for each of these topics. Each formula is explained
so the engineer, drafter, or designer knows how, where, and
when to use the formula in professional work. Formula
units are given in both the United States Customary System
(USCS) and System International (SI). Hence, the text is
usable throughout the world. To assist the civil engineer
using this material in worldwide engineering practice, a com-
prehensive tabulation of conversion factors is presented in
Chapter 1.

In assembling this collection of formulas, the author
was guided by experts who recommended the areas of
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Xiv PREFACE

greatest need for a handy book of practical and applied civil
engineering formulas.

Sources for the formulas presented here include the var-
ious regulatory and industry groups in the field of civil engi-
neering, authors of recognized books on important topics in
the field, drafters, researchers in the field of civil engineer-
ing, and a number of design engineers who work daily in
the field of civil engineering. These sources are cited in the
Acknowledgments.

When using any of the formulas in this book that
may come from an industry or regulatory code, the user
is cautioned to consult the latest version of the code.
Formulas may be changed from one edition of a code to
the next. In a work of this magnitude it is difficult to
include the latest formulas from the numerous constant-
ly changing codes. Hence, the formulas given here are
those current at the time of publication of this book.

In a work this large it is possible that errors may occur.
Hence, the author will be grateful to any user of the book
who detects an error and calls it to the author’s attention.
Just write the author in care of the publisher. The error will
be corrected in the next printing.

In addition, if a user believes that one or more important
formulas have been left out, the author will be happy to
consider them for inclusion in the next edition of the book.
Again, just write him in care of the publisher.

Tyler G. Hicks, PE.
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HOW TO USE
THIS BOOK

The formulas presented in this book are intended for use by
civil engineers in every aspect of their professional work—
design, evaluation, construction, repair, etc.

To find a suitable formula for the situation you face,
start by consulting the index. Every effort has been made to
present a comprehensive listing of all formulas in the book.

Once you find the formula you seek, read any accompa-
nying text giving background information about the formula.
Then when you understand the formula and its applications,
insert the numerical values for the variables in the formula.
Solve the formula and use the results for the task at hand.

Where a formula may come from a regulatory code,
or where a code exists for the particular work being
done, be certain to check the latest edition of the appli-
cable code to see that the given formula agrees with the
code formula. If it does not agree, be certain to use the
latest code formula available. Remember, as a design
engineer you are responsible for the structures you plan,
design, and build. Using the latest edition of any govern-
ing code is the only sensible way to produce a safe and
dependable design that you will be proud to be associ-
ated with. Further, you will sleep more peacefully!
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CHAPTER 1

CONVERSION
FACTORS FOR
CIVIL
ENGINEERING
PRACTICE

D! 002 The McGraw-Hill Companies. Click Here for Terms of U;D—FEBOOK



2 CHAPTER ONE

Civil engineers throughout the world accept both the
United States Customary System (USCS) and the System
International (SI) units of measure for both applied and
theoretical calculations. However, the SI units are much
more widely used than those of the USCS. Hence, both the
USCS and the SI units are presented for essentially every
formula in this book. Thus, the user of the book can apply
the formulas with confidence anywhere in the world.

To permit even wider use of this text, this chapter con-
tains the conversion factors needed to switch from one sys-
tem to the other. For engineers unfamiliar with either
system of units, the author suggests the following steps for
becoming acquainted with the unknown system:

1. Prepare a list of measurements commonly used in your
daily work.

2. Insert, opposite each known unit, the unit from the other
system. Table 1.1 shows such a list of USCS units with
corresponding SI units and symbols prepared by a civil
engineer who normally uses the USCS. The SI units
shown in Table 1.1 were obtained from Table 1.3 by the
engineer.

3. Find, from a table of conversion factors, such as Table 1.3,
the value used to convert from USCS to SI units. Insert
each appropriate value in Table 1.2 from Table 1.3.

4. Apply the conversion values wherever necessary for the
formulas in this book.

5. Recognize—here and now—that the most difficult
aspect of becoming familiar with a new system of meas-
urement is becoming comfortable with the names and
magnitudes of the units. Numerical conversion is simple,
once you have set up your own conversion table.
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CONVERSION FACTORS 3

TABLE 1.1 Commonly Used USCS and SI Units'

Conversion factor

(multiply USCS unit
by this factor to
USCS unit SI unit SI symbol obtain SI unit)
square foot square meter m? 0.0929
cubic foot cubic meter m3 0.2831
pound per
square inch  kilopascal kPa 6.894
pound force newton Nu 4.448
foot pound
torque newton meter N'm 1.356
kip foot kilonewton meter ~ kN-m 1.355
gallon per
minute liter per second L/s 0.06309
kip per square
inch megapascal MPa 6.89

This table is abbreviated. For a typical engineering practice, an actual table
would be many times this length.

Be careful, when using formulas containing a numerical
constant, to convert the constant to that for the system you
are using. You can, however, use the formula for the USCS
units (when the formula is given in those units) and then
convert the final result to the SI equivalent using Table 1.3.
For the few formulas given in SI units, the reverse proce-
dure should be used.
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CHAPTER ONE

TABLE 1.2 Typical Conversion Table"

To convert from To Multiply by*
square foot square meter 9.290304 E — 02
foot per second meter per second

squared squared 3.048 E — 01
cubic foot cubic meter 2.831685 E — 02
pound per cubic kilogram per cubic

inch meter 2767990 E + 04
gallon per minute liter per second 6.309 E—-02
pound per square

inch kilopascal 6.894757
pound force newton 4.448222
kip per square foot pascal 4788026 E + 04
acre foot per day cubic meter per E—02

second 1.427641
acre square meter 4.046873 E + 03
cubic foot per cubic meter per

second second 2.831685 E — 02

“This table contains only selected values. See the U.S. Department of the
Interior Metric Manual, or National Bureau of Standards, The International
System of Units (SI), both available from the U.S. Government Printing
Office (GPO), for far more comprehensive listings of conversion factors.
“The E indicates an exponent, as in scientific notation, followed by a positive
or negative number, representing the power of 10 by which the given con-
version factor is to be multiplied before use. Thus, for the square foot con-
version factor, 9.290304 X 1/100 = 0.09290304, the factor to be used to
convert square feet to square meters. For a positive exponent, as in convert-
ing acres to square meters, multiply by 4.046873 X 1000 = 4046.8.

Where a conversion factor cannot be found, simply use the dimensional
substitution. Thus, to convert pounds per cubic inch to kilograms per cubic
meter, find 1 1b = 0.4535924 kg and 1 in®> = 0.00001638706 m®. Then,

1 1b/in® = 0.4535924 kg/0.00001638706 m* = 27,680.01, or 2.768 E + 4.
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CONVERSION FACTORS

TABLE 1.3 Factors for Conversion to SI Units of Measurement

To convert from

To

Multiply by

acre foot, acre ft
acre
angstrom, A
atmosphere, atm
(standard)
atmosphere, atm
(technical
= 1 kgf/cm?)
bar

barrel (for petroleum,

42 gal)

board foot, board ft

British thermal unit,
Btu, (mean)

British thermal unit,
Btu (International
Table)-in/(h)(ft?)
(°F) (k, thermal
conductivity)

British thermal unit,
Btu (International
Table)/h

British thermal unit,
Btu (International
Table)/(h)(ft*)(°F)
(C, thermal
conductance)

British thermal unit,
Btu (International
Table)/1b

cubic meter, m?
square meter, m>
meter, m

pascal, Pa

pascal, Pa

pascal, Pa
cubic meter, m?

cubic meter, m?
joule, J

watt per meter
kelvin, W/(m-K)

watt, W

waltt per square
meter kelvin,
W/(m?-K)

joule per kilogram,
J/kg

1.233489 E + 03
4.046873 E + 03
1.000000" E — 10
1.013250" E + 05

9.806650" E + 04

1.000000" E + 05

1.589873 E — 01
2.359737 E — 03
1.05587 E + 03
1442279 E — 01
2930711 E —01
5.678263 E + 00

2.326000° E + 03
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CHAPTER ONE

TABLE 1.3 Factors for Conversion to SI Units of Measurement

(Continued)

To convert from

To

Multiply by

British thermal unit,
Btu (International
Table)/(1b)(°F)

(c, heat capacity)
British thermal unit,
cubic foot, Btu

(International
Table)/ft*
bushel (U.S.)

calorie (mean)

candela per square
inch, cd/in?

centimeter, cm, of
mercury (0°C)

centimeter, cm, of
water (4°C)

chain

circular mil

day
day (sidereal)
degree (angle)
degree Celsius
degree Fahrenheit
degree Fahrenheit
degree Rankine
(°F)(h)(f?)/Btu
(International
Table) (R, thermal
resistance)

joule per kilogram
kelvin, J/(kg-K)

joule per cubic
meter, J/m?

cubic meter, m?

joule, J

candela per square
meter, cd/m?

pascal, Pa

pascal, Pa

meter, m
square meter, m>

second, s

second, s

radian, rad

kelvin, K

degree Celsius, °C

kelvin, K

kelvin, K

kelvin square
meter per watt,
K-m¥W

4.186800° E + 03

3.725895 E + 04
3.523907 E —02
4.19002 E + 00
1.550003 E + 03
1.33322  E+03
9.80638  E + 01
2.011684 E + 01
5.067075 E — 10
8.640000" E + 04
8.616409 E + 04
1.745329 E — 02

Ty = te + 273.15
te = (tp — 32)/1.8

Ty = (ty + 459.67)/1.8

Ty = Tp/1.8
1761102 E — 01
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CONVERSION FACTORS

TABLE 1.3 Factors for Conversion to SI Units of Measurement

(Continued)
To convert from To Multiply by
(°F)(h)(f®)/(Btu kelvin meter per 6.933471 E + 00
(International watt, K-m/W
Table)-in) (thermal
resistivity)
dyne, dyn newton, N 1.000000" E — 05
fathom meter, m 1.828804 E + 00
foot, ft meter, m 3.048000F E — 01
foot, ft (U.S. survey) meter, m 3.048006 E — 01
foot, ft, of water pascal, Pa 298898 E + 03
(39.2°F) (pressure)
square foot, ft> square meter, m? 9.2903047 E — 02
square foot per hour, square meter per 2.5806407 E — 05
ft*/h (thermal second, m%/s
diffusivity)
square foot per square meter per 9.290304F E — 02
second, ft*/s second, m?%/s
cubic foot, ft* (volume  cubic meter, m? 2.831685 E — 02
or section modulus)
cubic foot per minute,  cubic meter per 4.719474 E — 04
ft3/min second, m/s
cubic foot per second, cubic meter per 2.831685 E — 02
ft3/s second, m/s
foot to the fourth meter to the fourth  8.630975 E — 03

power, ft* (area
moment of inertia)
foot per minute,
ft/min
foot per second,
ft/s

power, m*

meter per second,
m/s

meter per second,
m/s

5.080000" E — 03

3.048000" E — 01
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8 CHAPTER ONE

TABLE 1.3 Factors for Conversion to SI Units of Measurement
(Continued)

To convert from To Multiply by

foot per second meter per second 3.0480007 E — 01
squared, ft/s” squared, m/s?

footcandle, fc lux, Ix 1.076391 E + 01

footlambert, fL candela per square  3.426259 E + 00

meter, cd/m?

foot pound force, ft-1bf  joule, J 1.355818 E + 00

foot pound force per watt, W 2.259697 E — 02
minute, ft-1bf/min

foot pound force per watt, W 1.355818 E + 00
second, ft-1bf/s

foot poundal, ft joule, J 4.214011 E — 02
poundal

free fall, standard g meter per second 9.8066507 E + 00
squared, m/s?

gallon, gal (Canadian cubic meter, m? 4.546090 E — 03
liquid)

gallon, gal (U.K. cubic meter, m? 4.546092 E — 03
liquid)

gallon, gal (U.S.dry)  cubic meter, m? 4404884 E — 03

gallon, gal (U.S. cubic meter, m* 3.785412 E — 03
liquid)

gallon, gal (U.S. cubic meter per 4381264 E — 08
liquid) per day second, m?/s

gallon, gal (U.S. cubic meter per 6.309020 E — 05
liquid) per minute second, m?/s

grad degree (angular) 9.0000007 E — 01

grad radian, rad 1.570796 E — 02

grain, gr kilogram, kg 6.4798917 E — 05

gram, g kilogram, kg 1.000000" E — 03
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CONVERSION FACTORS

TABLE 1.3 Factors for Conversion to SI Units of Measurement

(Continued)

To convert from

To

Multiply by

hectare, ha

horsepower, hp
(550 ft-1bf/s)

horsepower, hp
(boiler)

horsepower, hp
(electric)

horsepower, hp
(water)

horsepower, hp (U.K.)

hour, h

hour, h (sidereal)

inch, in

inch of mercury, in Hg
(32°F) (pressure)

inch of mercury, in Hg
(60°F) (pressure)

inch of water, in
H,0 (60°F)
(pressure)

square inch, in?

cubic inch, in?
(volume or section
modulus)

inch to the fourth
power, in* (area
moment of inertia)

inch per second, in/s

square meter, m>
watt, W

watt, W
watt, W
watt, W
watt, W

second, s
second, s

meter, m
pascal, Pa

pascal, Pa
pascal, Pa

square meter, m>
cubic meter, m?

meter to the fourth
power, m*

meter per second,
m/s

1.000000" E + 04
7.456999 E + 02

9.80950 E + 03

7.4600007 E + 02

7.460437 E + 02

7.4570 E+02
3.600000" E + 03
3.590170 E + 03

2.540000" E — 02

3.38638 E + 03
3.37685 E + 03
2.4884 E+02

6.451600" E — 04
1.638706

4.162314

2.540000" E — 02
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TABLE 1.3 Factors for Conversion to SI Units of Measurement

(Continued)

To convert from

kelvin, K

kilogram force, kgf

kilogram force meter,
kg'm

kilogram force second
squared per meter,
kgf-s*m (mass)

kilogram force per
square centimeter,
kgf/cm?

kilogram force per
square meter,
kgf/m?

kilogram force per
square millimeter,
kgf/mm?

kilometer per hour,
km/h

kilowatt hour, kWh

kip (1000 Ibf)

kipper square inch,
kip/in® ksi

knot, kn (international)

lambert, L

liter

maxwell
mho

To Multiply by
degree Celsius, °C 1o = Tx — 273.15
newton, N 9.806650 E + 00
newton meter, 9.806650" E + 00
N-m
kilogram, kg 9.8066507 E + 00
pascal, Pa 9.806650" E + 04
pascal, Pa 9.806650" E + 00
pascal, Pa 9.806650" E + 06
meter per second, 2777778 E — 01
m/s
joule, J 3.600000" E + 06
newton, N 4.448222 E + 03
pascal, Pa 6.894757 E + 06
meter per second, 5.144444 E — 01
m/s
candela per square ~ 3.183099 E + 03
meter, cd/m
cubic meter, m? 1.000000" E — 03
weber, Wb 1.000000" E — 08
siemens, S 1.0000007 E + 00

TLFeBOOK



CONVERSION FACTORS

1

TABLE 1.3 Factors for Conversion to SI Units of Measurement

(Continued)

To convert from To Multiply by
microinch, uin meter, m 2.540000F E — 08
micron, gm meter, m 1.000000f E — 06
mil, mi meter, m 2.5400007 E — 05
mile, mi (international)  meter, m 1.609344%7 E + 03
mile, mi (U.S. statute)  meter, m 1.609347 E + 03
mile, mi (international ~ meter, m 1.852000F E + 03

nautical)
mile, mi (U.S. nautical) meter, m 1.8520007 E + 03
square mile, mi? square meter, m? 2.589988 E + 06

(international)
square mile, mi? square meter, m? 2.589998 E + 06

(U.S. statute)
mile per hour, mi/h meter per second, 44704007 E — 01

(international) m/s
mile per hour, mi/h kilometer per hour,  1.609344" E + 00

(international) km/h
millibar, mbar pascal, Pa 1.000000 E + 02
millimeter of mercury,  pascal, Pa 133322 E+ 02

mmHg (0°C)
minute (angle) radian, rad 2908882 E — 04
minute, min second, s 6.000000 E + 01
minute (sidereal) second, s 5.983617 E + 01
ounce, 0z kilogram, kg 2.834952 E — 02

(avoirdupois)
ounce, oz (troy or kilogram, kg 3.110348 E — 02

apothecary)
ounce, oz (U.K. fluid)  cubic meter, m? 2.841307 E — 05
ounce, oz (U.S. fluid)  cubic meter, m? 2.957353 E — 05
ounce force, ozf newton, N 2.780139 E — 01
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CHAPTER ONE

TABLE 1.3 Factors for Conversion to SI Units of Measurement

(Continued)

To convert from

To

Multiply by

ounce force-inch,
ozf-in

ounce per square foot,
oz (avoirdupois)/ft>

ounce per square yard,
oz (avoirdupois)/yd?

perm (0°C)

perm (23°C)

perm inch, perm-in
(0°C)

perm inch, perm-in
(23°C)

pint, pt (U.S. dry)

pint, pt (U.S. liquid)

poise, p (absolute
viscosity)

pound, Ib
(avoirdupois)

pound, b (troy or
apothecary)

pound square inch,
Ib-in? (moment of
inertia)

newton meter,
N'm
kilogram per square
meter, kg/m?
kilogram per square
meter, kg/m?
kilogram per pascal
second meter,
kg/(Pa-s-m)
kilogram per pascal
second meter,
kg/(Pa-s-m)
kilogram per pascal
second meter,
kg/(Pa-s-m)
kilogram per pascal
second meter,
kg/(Pa-s-m)
cubic meter, m?
cubic meter, m?
pascal second,
Pa-s
kilogram, kg

kilogram, kg

kilogram square
meter, kg-m?

7.061552 E — 03

3.051517 E —01

3.390575 E — 02

572135 E-—11
574525 E — 11
145322 E—12
145929 E — 12
5.506105 E — 04
4.731765 E — 04
1.000000" E — 01
4.535924 E — 01
3.732417 E — 01
2.926397 E — 04
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TABLE 1.3 Factors for Conversion to SI Units of Measurement

(Continued)
To convert from To Multiply by

pound per foot- pascal second, 1.488164 E + 00
second, 1b/ft-s Pa-s

pound per square kilogram per square ~ 4.882428 E + 00
foot, 1b/ft? meter, kg/m?

pound per cubic kilogram per cubic  1.601846 E — 01
foot, 1b/ft? meter, kg/m?

pound per gallon, kilogram per cubic  9.977633 E + 01
1b/gal (U.K. liquid) meter, kg/m?

pound per gallon, kilogram per cubic  1.198264 E + 02
1b/gal (U.S. liquid) meter, kg/m?

pound per hour, 1b/h kilogram per 1.259979 E — 04

second, kg/s

pound per cubic inch,  kilogram per cubic  2.767990 E + 04
Ib/in? meter, kg/m?

pound per minute, kilogram per 7.559873 E — 03
1b/min second, kg/s

pound per second, kilogram per 4.535924 E — 01
1b/s second, kg/s

pound per cubic yard,  kilogram per cubic = 5.932764 E — 01
Ib/yd? meter, kg/m?

poundal newton, N 1.382550 E — 01

pound-force, Ibf newton, N 4.448222 E + 00

pound force foot, newton meter, 1.355818 E + 00
Ibf-ft N-m

pound force per foot, ~ newton per meter, 1.459390 E + 01
Ibf/ft N/m

pound force per pascal, Pa 4.788026 E + 01
square foot, Ibf/ft>

pound force per inch, ~ newton per meter, 1.751268 E + 02

Ibf/in

N/m
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CHAPTER ONE

TABLE 1.3 Factors for Conversion to SI Units of Measurement

(Continued)
To convert from To Multiply by
pound force per square  pascal, Pa 6.894757 E + 03
inch, 1bf/in? (psi)
quart, qt (U.S. dry) cubic meter, m? 1.101221 E — 03
quart, qt (U.S. liquid)  cubic meter, m? 9.463529 E — 04
rod meter, m 5.029210 E + 00
second (angle) radian, rad 4.848137 E — 06
second (sidereal) second, s 9.972696 E — 01
square (100 ft?) square meter, m> 9.290304% E + 00
ton (assay) kilogram, kg 2916667 E — 02
ton (long, 2240 1b) kilogram, kg 1.016047 E + 03

ton (metric)

ton (refrigeration)

ton (register)

ton (short, 2000 1b)

ton (long per cubic
yard, ton)/yd?

ton (short per cubic
yard, ton)/yd?

ton force (2000 1bf)

tonne, t

watt hour, Wh

yard, yd

square yard, yd?

cubic yard, yd?

year (365 days)

year (sidereal)

kilogram, kg

watt, W

cubic meter, m?

kilogram, kg

kilogram per cubic
meter, kg/m?

kilogram per cubic
meter, kg/m?

newton, N

kilogram, kg

joule, J

meter, m

square meter, m’
cubic meter, m?
second, s
second, s

1.000000" E + 03
3.516800 E + 03
2.831685 E + 00
9.071847 E + 02
1.328939 E + 03
1.186553 E + 03
8.896444 E + 03
1.000000" E + 03

3.6000007 E + 03

9.144000" E — 01
8.361274 E — 01
7.645549 E — 01
3.1536007 E + 07
3.155815 E + 07

“Exact value.

From E380, “Standard for Metric Practice,” American Society for Testing

and Materials.
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16 CHAPTER TWO

In analyzing beams of various types, the geometric proper-
ties of a variety of cross-sectional areas are used. Figure 2.1
gives equations for computing area A, moment of inertia /,
section modulus or the ratio S = I/c, where ¢ = distance
from the neutral axis to the outermost fiber of the beam or
other member. Units used are inches and millimeters and
their powers. The formulas in Fig. 2.1 are valid for both
USCS and SI units.

Handy formulas for some dozen different types of
beams are given in Fig. 2.2. In Fig. 2.2, both USCS and SI
units can be used in any of the formulas that are applicable
to both steel and wooden beams. Note that W = load, Ib
(kN); L = length, ft (m); R = reaction, b (kN); V = shear,
Ib (kN); M = bending moment, Ib- ft (N-m); D = deflec-
tion, ft (m); a = spacing, ft (m); b = spacing, ft (m); £ =
modulus of elasticity, Ib/in?> (kPa); I = moment of inertia,
in* (dm*); < = less than; > = greater than.

Figure 2.3 gives the elastic-curve equations for a variety
of prismatic beams. In these equations the load is given as
P, 1Ib (kN). Spacing is given as k, ft (m) and c, ft (m).

CONTINUOUS BEAMS

Continuous beams and frames are statically indeterminate.
Bending moments in these beams are functions of the
geometry, moments of inertia, loads, spans, and modulus of
elasticity of individual members. Figure 2.4 shows how any
span of a continuous beam can be treated as a single beam,
with the moment diagram decomposed into basic com-
ponents. Formulas for analysis are given in the diagram.
Reactions of a continuous beam can be found by using the
formulas in Fig. 2.5. Fixed-end moment formulas for
beams of constant moment of inertia (prismatic beams) for
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FIGURE 2.1 Geometric properties of sections.
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Section Moment of inertia Section modulus Radius of gyration

Equilateral Polygon 4 I I

A = area _ 4 2 _ 42 = _

R = rad circumscribed 1 24 (6F* — a?) ¢ T \/(,1p —a R

circle _ I 4 7

E'o r = rad inscribed cirele = A (12r2 + a?) - 180° —24_._ 2

n = no. sides 48 R cos . 1212 F az

a = length of side _AR? ) 48

Axis as in preceding sec- T T4 (approx

AR
s = =22 (approx)
tion of octagon 4

e
A
{

3

_ ObF F 6bby + bt
36(2b + by) I _ 66 + 6bbi + bi® 1 i/ 1257 + 12bb1 + 262
6(2b + by)

_ 136 + 2 ¢ 12036 + 2by)

by ‘T3 %t
BE

e by ]

N
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7— 7 c 6H

FIGURE 2.1 (Continued) Geometric properties of sections.
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Section

Moment of inertia and section modulus

Radius of gyration

I
L

C

14(Be® — Bih3 4 besd — bi/ud)
l ak? 4 Bid® + bhdi(2H — dv)
2

af + Bid + bids

1

T
\/m

B_- — e —
S 8 - i
Pt g f-z i #?NIF
AR v ] s 7 ° ¢
Lo Le ¥ T i
el L

" [ oo |

I = 14(Bed — b3 + acd)
| ali? 4 bd?

2 all +bd

c2 =1 —a

ca =

j— _—_YI—____
r= \/[Bd T ol = D]
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Section

Moment of inertia

Section modulus

Radius of gyration

r=

= 0.05d* (approx)

= 0.1d3 (approx)

NI
SR

dm = 14(D + d)
s = %D —d

I

™

(Dt —d¥

s

6
T (R —
4(R )

= YAR + 1)
= 0.05(D¢ — d¥)
(approx)

I_I_D‘—d‘

¢ 32 D
TR -n
4 R

I

0.8dn2s (approx)

when = is very small
dm

FIGURE 2.1 (Continued) Geometric properties of sections.

VE £ /D &
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Section

Moment of inertia

Section modulus

Radius of gyration

8 1 = 0.1908s3
T =p {22 “ P — 64
(a 5 I _ o gsemms %‘/9"6 o4, = 0.264r
= 0.1098r¢ a i
¢ = 0.4244r
I = 0.1098(R¢ — %)
_ 0.283R%*R — 1) 4 R Ry 4t —a—
= 0.3(r3 (approx) i + (R 1)
c2=R —a = 0.31r (approx)

t .
when — is very small
1
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[ =" _ 0.7854a% I 7% _ 8540w a
4 c 4 2
b
I = : (a®h — ai¥h) . ,\/ I _
. I = %a(a + 3b)t (wrab — aib1)
=" q? Ih)t c ~
2° (a + 3b) (approx) 3\/‘}.L39 (approx)
(approx) 2Vatd

FIGURE 2.1 (Continued) Geometric properties of sections.
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Section l Moment of inertia and section modulus ' Radius of gyration

I=—l[3—’rd‘+b(h3—d3)+ba(h—d):l N |

121 16 42

I 1l o ; oy H B —d)

= — | ZZ a4 b 3 3(h —

¢ G6h] 16 + B+ ) + 5 ):I (approx)

¢t (xB3 ~BR? | 2

I =2 (T2 B £ ps

_ 4\16 TEr+ +3h) T
h=H — %B =B

1__u 2 (7 +e) e

¢ H 4+t
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FIGURE 2.1 (Continued)

14

L—H-—

I-= T604§ (bihsd — bahe?), where

= YHH +1) |b = (B + 2.60)
he = Y4(H — ) | b = ¥%(B — 2.6
I
c H+t

Geometric properties of sections.

-y

31
H2B + 5.2H)
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Approximate values of least radius of gyration r

- D | ~{D j= ~D =
@g Hi E-becm EChonnel Eﬁ:gfﬂ

Carnegie Z ~bar

Phoenix column
column
3 r = 0.3636D 0.295D D/4.58 D/3.54 D/6

=2
=D *:". ﬁ D Angle g‘é‘ Angle - F
E__?_ T-beam - Equal legs T Unequal legs BSS’ D Cross

kg Lo

r= D/4.74 D/5 BD/2.6(B + D) D/4.74

FIGURE 2.1 (Continued) Geometric properties of sections.
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BEAM FORMULAS 27

several common types of loading are given in Fig. 2.6.
Curves (Fig. 2.7) can be used to speed computation of
fixed-end moments in prismatic beams. Before the curves
in Fig. 2.7 can be used, the characteristics of the loading
must be computed by using the formulas in Fig. 2.8. These
include XL, the location of the center of gravity of the load-
ing with respect to one of the loads; G* = %b2 P,/W, where
b,L is the distance from each load P, to the center of
gravity of the loading (taken positive to the right); and S* =
3b3 P,/W. These values are given in Fig. 2.8 for some com-
mon types of loading.

Formulas for moments due to deflection of a fixed-end
beam are given in Fig. 2.9. To use the modified moment
distribution method for a fixed-end beam such as that in
Fig. 2.9, we must first know the fixed-end moments for a
beam with supports at different levels. In Fig. 2.9, the right
end of a beam with span L is at a height d above the left
end. To find the fixed-end moments, we first deflect the
beam with both ends hinged; and then fix the right end,
leaving the left end hinged, as in Fig. 2.95. By noting that a
line connecting the two supports makes an angle approxi-
mately equal to d/L (its tangent) with the original position
of the beam, we apply a moment at the hinged end to pro-
duce an end rotation there equal to d/L. By the definition of
stiffness, this moment equals that shown at the left end of
Fig. 2.9b. The carryover to the right end is shown as the top
formula on the right-hand side of Fig. 2.9b. By using the
law of reciprocal deflections, we obtain the end moments of
the deflected beam in Fig. 2.9 as

d

Mf= K[+ Ch, 2.1)
d

Mf =K+ CD— (2.2)
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CASE 2. - Beam Supported Both Ends - Concentrated Load at Any Point.

=¥
R=1
=¥
R, L
V¥ (max)=R when a<b and R, when a>b
At x: =ﬂ
L

At point of load:

Wab
M ..
(max.) L
At x: when x<a
_ Wbx
M= U

At x: when x=+/a(a+2b)+3 and a>b
D (max.) =Wab (a+2b)v/3a (a+2b) +27 EIL
At x: when x<a

Whx
D=6—;TL[2L(L—x)—b’—(L—x)’] _

At x: when x>a

_Wa(l-x)
D=L [2tb-82- (1-9?]

DR B
RK’,:"Z?“ D
r—x—-l m I

b

4<L l-!

FIGURE 2.2 Beam formulas. (From J. Callender, Time-Saver Standards for Architectural Design Data,

6th ed., McGraw-Hill, N.Y.)
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CASE 3. - Beam Supported Both Ends - Two Unequal Concentrated Loads, Unequally Distributed.

R=7[W.(-0) +Wb]

R,=1£[ WatW, (1-b) ]

Y (max.) = Maximum Reaction
At x: when x> s and <(L-b)
V=R-W

At point of load W:

M=$[W (-0) + Wb ]

At point of load W,:

Mr2 [+, (1-4)]

At x: when x> a or <(L~b)
M=wiL(L—x)+w,

bx

L

TLFeBOOK



L€

CASE 4. - Beam Supported Both Ends - Three Unequal Concentrated Loads, Unequally Distributed.

— Whb+W,b, +W;bz
R=——p——

Wa+W e +Waa2
Ry==—
V (max.) = Maximum Reaction
At x: when x>a and <a
V=R-W
At x: when x>, and <a,
V=R-W-W,

At x: when x=a .

M=Ra
At x: when x=a,

M=Ra,-W(a,~a)
At x: when x=ay
My=Ra; ~W(ay—a)=W, (23~4s)
M (max.) =M when W=R or >R

W,;+W=R or>R

M (max.) = M, when {W,i'V/fR. or>R,
M (max.) =My when Wa=R;or >R

L

a4y ———>pe by

jo- @ meeird] bt
E._LE%—E'_!'_
1 x—ad RI
— 33
A ] “Ih mM
|
Uﬂmnﬂﬂﬂm

b

P

FIGURE 2.2 (Continued) Beam formulas.
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CASE 5. - Beam Fixed Both Ends - Continuous Load, Uniformly Distributed.

At center:
wL At center:
R=R=V (max)= 4 () = u D (max.) =§_187 w
2 At supports: 1
At x: v W M, (mn.)=¥2—L At x:
V=3-7T R o b= 24EI|_("z 2t )
M=ﬁ (—z-f-Lx-x’)
L
3
\ I e )
R N I
M
-+
i M
3 rex—e i
v

ey
! —¥

TLFeBOOK



€€

CASE 6. - Beam Fixed Both Ends - Concentrated Load at Any Point.

8 (30tb At support R: 2
=w (b (3atb) . 3 b
R \V( E) ) M, (man :,?m"bw;. = _wiLz— At x: when x= 32.:: and a>b
—w (2 (3b+s) At support R : 3,2
Rl_w( e ) M (max. neg. mom. ) _le_b D(,.,..,.)=__2_w_'_b_.z
= 2 when a> b [ 3EI (3a+b)
V (max.) = R when a <b .
=R, when a3 b At point of load: ab? when x <a
! = =Ra-W 2 2.2
At x: when x <a M (max) = Ra+ My =Ra-W 2 D= Vb (3-(.— le—-bx)
V=R At x: oEIL

FIGURE 2.2 (Continued) Beam formulas.
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CASE 7. - Beam Fixed at One End (Cantilever) - Continuous Load, Uniformly Distributed..

At x:

R =V (mex)=W

At fixed end:
M (mex.) = V%L

At x:

At free end: 3
D (max.) = TEI
At x:

D w

= 24EIL

(x*-4LCx+30*)
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CASE 8. - Beam Fixed at One End (Cantilever) - Concentrated Load at Any Point.

At free end:

R =V (max.)=W

At x: when x> a
V=W

At x: when x <a
V=0

At fixed end:
M (max.) = Wb

At x: when x >a

M=V (x-8)

WLy 38 cay
D(max.)—bEI [2 L + L) ]
At point of load:

HE2PRY
D=3g; (L-e)

At x: when x> a
(—3aL’+2L’+x°-
3ax? —3L’x+6.Lx)

D—__..

6El

FIGURE 2.2 (Continued)

4
D
+

C-i‘FIUIH[U

E——W—L—-————*\
b——R
—_— N

4 < ez

Beam formulas.
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CASE 9. - Beam Fixed at One End, Supported at Other - Concentrated Load at Any Point.

R=W (Sb’L— )

At point of load:

3b2L-b° At x: when x= a=.414L s
2L M (max.) =Y ( 7o) D (max) =.0098 &
3al2-p3 At fixed end: EI
( 3 ) M, (max.) = WL( 3 ) ~W (L~a) At x: when x<a
L 2'- 3R —Rx~
At x: when x <a At x: when x <" (3b’L—b’) =&El [ IW (L-0)° ,]
V=R At x: when >. At x: whenx>a )
At x: when x >a : when x 3b2-p> [R L (233 +x%) -
V=R-W M=Wx (Z557)-W (x-a) “sEl 3Wa (L-0)?]

D@;
S sl

r
£}

e A

v

I
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CASE 10. - Beam Fixed at One End, Supported at Other - Continuous Load, Uniformly Distributed

R=3w

R,=V (mex)= 3
At x

v= gw-¥

At x: when x= =3 L

M (mlx.)-
At fixed end:

M, (mex.) = %WL
At x:

m= (5-)

128 wL

At x: when x=.4215L )

WL
D (max.) =.0054 3

At x:

48Eu_[—aLx’n 342

FIGURE 2.2 (Continued)

Beam formulas.
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CASE 1. - Beam Overhanging Both Supports, Unsymmetrically Placed - Continuous Load, Uniformly Distributed.

l+‘l’./-+-_b =w=load per unit of length

R=w [(a+1)*-b*]+2L
Ri=w[(b+L)*-a?]+2L
Y (max.)=wa or R~ wa
At x: when x<o V=w (a-x)
At x,: when x, <L Y=R-w (a+x,)
At x5: when x,€b V=w (b"xz)

At x;: when x,=%-—a

M (max.) =R (%-n)

M= Yawa?

At R 2
M= Y2 wh 2
At x: when x €a M=Vaw (a~x)
At x,: when x, <L M="%w (a+ x,)z—Rx|
At xj: when x3 b M="2w (b-x,)?

i i
2 b
“_l R |L Ry r{
fxoexed _ xagee 4
" Ow
M,
T T
=
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CASE 12. - Beam Overhanging Both Supports, Symmetrically Placed - Two Equal Concentrated Loads at Ends.

At x,: when x, <L

At free ends:

2
D= Wa* (3L+2,)

w Wi
R=R,=V(msx) =5 M (max) == T2El
At x: when x<a At x: when x <a At center: Wal?
.4 v, Vsl
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FIGURE 2.2 (Continued)

VI

Beam formulas.
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FIGURE 2.3 Elastic-curve equations for prismatic beams. (a) Shears, moments, deflections for full uni-
form load on a simply supported prismatic beam. (b) Shears and moments for uniform load over part of
a simply supported prismatic beam. (c) Shears, moments, deflections for a concentrated load at any point

of a simply supported prismatic beam.
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FIGURE 2.3 (Continued) Elastic-curve equations for prismatic beams. (g) Shears, moments, deflec-
tions for a concentrated load on a beam overhang. (k) Shears, moments, deflections for a concentrated load
on the end of a prismatic cantilever. (i) Shears, moments, deflections for a uniform load over the full length

of a beam with overhang.
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FIGURE 2.3 (Continued) Elastic-curve equations for prismatic beams. (j) Shears, moments, deflections
for uniform load over the full length of a cantilever. (k) Shears, moments, deflections for uniform load on a
beam overhang. (/) Shears, moments, deflections for triangular loading on a prismatic cantilever.
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FIGURE 2.3 (Continued) Elastic-curve equations for prismatic beams. (m) Simple beam—Ioad increas-
ing uniformly to one end.
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FIGURE 2.3 (Continued) Elastic-curve equations for prismatic beams. (n) Simple beam—Iload increas-

ing uniformly to center.
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FIGURE 2.3 (Continued) Elastic-curve equations for prismatic beams. (0) Simple beam—uniform load

partially distributed at one end.
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FIGURE 2.4 Any span of a continuous beam (@) can be treated as a simple beam, as shown in () and (c).

In (c), the moment diagram is decomposed into basic components.
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Y23
(e)

dy = yuRy + yieRe + y1sRs
de = yuRi + y2R: + y2sRa
ds = yuRi + ya:Re + ys:sls

FIGURE 2.5 Reactions of continuous beam (@) found by making
the beam statically determinate. (b) Deflections computed with
interior supports removed. (¢), (d), and (e) Deflections calculated
for unit load over each removed support, to obtain equations for
each redundant.
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FIGURE 2.6 Fixed-end moments for a prismatic beam. (a) For a
concentrated load. (b) For a uniform load. (¢) For two equal con-
centrated loads. (d) For three equal concentrated loads.

wf—
z
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In a similar manner the fixed-end moment for a beam with
one end hinged and the supports at different levels can be
found from

MF = K— (2.3)

where K is the actual stiffness for the end of the beam that
is fixed; for beams of variable moment of inertia K equals
the fixed-end stiffness times (1 — C{C¥%).
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FIGURE 2.8 Characteristics of loadings.
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FIGURE 2.8 (Continued) Characteristics of loadings.
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ULTIMATE STRENGTH OF
CONTINUOUS BEAMS

Methods for computing the ultimate strength of continuous
beams and frames may be based on two theorems that fix
upper and lower limits for load-carrying capacity:

1. Upper-bound theorem. A load computed on the basis of
an assumed link mechanism is always greater than, or at
best equal to, the ultimate load.
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FIGURE 2.9 Moments due to deflection of a fixed-end beam.

2. Lower-bound theorem. The load corresponding to an
equilibrium condition with arbitrarily assumed values
for the redundants is smaller than, or at best equal to, the
ultimate loading—provided that everywhere moments
do not exceed Mp. The equilibrium method, based on
the lower bound theorem, is usually easier for simple
cases.
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For the continuous beam in Fig. 2.10, the ratio of the
plastic moment for the end spans is & times that for the cen-
ter span (k > 1).

Figure 2.10b shows the moment diagram for the beam
made determinate by ignoring the moments at B and C and
the moment diagram for end moments My and M. applied
to the determinate beam. Then, by using Fig. 2.10c, equilib-
rium is maintained when

Mp = WL - iMb* - LMC
4 2 2
o owl?
4 — kM,
__wkr (2.4)
41 + k)

The mechanism method can be used to analyze rigid
frames of constant section with fixed bases, as in Fig. 2.11.
Using this method with the vertical load at midspan equal
to 1.5 times the lateral load, the ultimate load for the frame
is 4.8Mp/L laterally and 7.2Mp/L vertically at midspan.

Maximum moment occurs in the interior spans AB and
CD when

) wL ’
or if

L kM,
M = kMp when xX=—-
2 wL

(2.6)

A plastic hinge forms at this point when the moment equals
kM p. For equilibrium,
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FIGURE 2.10 Continuous beam shown in (a) carries twice as
much uniform load in the center span as in the side span. In (b) are
shown the moment diagrams for this loading condition with redun-
dants removed and for the redundants. The two moment diagrams
are combined in (c¢), producing peaks at which plastic hinges are
assumed to form.
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FIGURE 2.11 Ultimate-load possibilities for a rigid frame of constant section with fixed bases.
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w X
kMp = TX(L_X) _kop

w(L kMp\[L KM,,) (1 kMP>
=—|=- + == kM
2(2 wL)<2 wL 2 w? i

leading to

M> 12
L kM, + =0
wL 4 2.7

When the value of M, previously computed is substituted,
Tk + 4k = 4 or k(k+ %) =%,
from which £ = 0.523. The ultimate load is

aMp (1 + M
WLZMZG.I I
L L

(2.8)

In any continuous beam, the bending moment at any
section is equal to the bending moment at any other section,
plus the shear at that section times its arm, plus the product
of all the intervening external forces times their respective
arms. Thus, in Fig. 2.12,

Vc=R,+R,+R;— P, — P, — P,
M,=R,(, +1,+x)+R,(, + x) + Ryx

— P (ly+c+x)— Py(b+x)— Pia
M, = M; + Vix — Pia

Table 2.1 gives the value of the moment at the various
supports of a uniformly loaded continuous beam over equal
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b 4 ¢
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FIGURE 2.12 Continuous beam.

spans, and it also gives the values of the shears on each side
of the supports. Note that the shear is of the opposite sign
on either side of the supports and that the sum of the two
shears is equal to the reaction.

Figure 2.13 shows the relation between the moment and
shear diagrams for a uniformly loaded continuous beam of
four equal spans. (See Table 2.1.) Table 2.1 also gives the
maximum bending moment that occurs between supports,
in addition to the position of this moment and the points of

! Moment ‘

FIGURE 2.13 Relation between moment and shear diagrams for
a uniformly loaded continuous beam of four equal spans.

TLFeBOOK



TABLE 2.1
(Uniform load per unit length = w; length of each span = 1)

Uniformly Loaded Continuous Beams over Equal Spans

Distance to
point of

Distance to

Shear on each side max moment, point of
Notation of support. L = left, measured to inflection,
Number of R = right. Reaction at Moment Max right from measured to
S of support any support is L + R over each moment in from right from
© supports  of span L R support each span support support
2 lor2 0 ' 0 0.125 0.500 None
3 1 0 A 0 0.0703 0.375 0.750
2 % % A 0.0703 0.625 0.250
4 1 0 Yo 0 0.080 0.400 0.800
2 %o %10 Yo 0.025 0.500 0.276, 0.724
1 0 s 0 0.0772 0.393 0.786
5 2 /s 5/s g 0.0364 0.536 0.266, 0.806
3 B/s 13/ Y 0.0364 0.464 0.194, 0.734
1 0 155 0 0.0779 0.395 0.789
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6 2 B
3 s

1 0
2 63/104
7 3 “roa
4 o4

1 0
8 2 /142
3 142
4 a2

R Values apply to w!

s
s
0
Wios

Y104
o
0

a2
Yia
Yz

wi?

0.0332
0.0461
0.0777
0.0340

0.0433
0.0433
0.0778

0.0338
0.0440
0.0405

wi?

0.526
0.500
0.394
0.533

0.490
0.510
0.394

0.528
0.493
0.500

0.268, 0.783
0.196, 0.804
0.788
0.268, 0.790
0.196, 0.785

0.215, 0.804
0.789

0.268, 0.788
0.196, 0.790
0.215, 0.785

l

The numerical values given are coefficients of the expressions at the foot of each column.
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FIGURE 2.14 Values of the functions for a uniformly loaded
continuous beam resting on three equal spans with four supports.

inflection. Figure 2.14 shows the values of the functions for
a uniformly loaded continuous beam resting on three equal
spans with four supports.

Maxwell’s Theorem

When a number of loads rest upon a beam, the deflection at
any point is equal to the sum of the deflections at this point
due to each of the loads taken separately. Maxwell’s theo-
rem states that if unit loads rest upon a beam at two points,
A and B, the deflection at A due to the unit load at B equals
the deflection at B due to the unit load at A.

Castigliano’s Theorem

This theorem states that the deflection of the point of
application of an external force acting on a beam is equal
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to the partial derivative of the work of deformation with
respect to this force. Thus, if P is the force, fis the deflec-
tion, and U is the work of deformation, which equals the
resilience:

aw _
dP

According to the principle of least work, the deforma-
tion of any structure takes place in such a manner that the
work of deformation is a minimum.

BEAMS OF UNIFORM STRENGTH

Beams of uniform strength so vary in section that the unit
stress S remains constant, and I/c varies as M. For rectangu-
lar beams of breadth b and depth d, I/c = I/c = bd*/6 and
M = Sbd?/6. For a cantilever beam of rectangular cross sec-
tion, under a load P, Px = Sbhd*/6. If b is constant, d? varies
with x, and the profile of the shape of the beam is a parabola,
as in Fig. 2.15. If d is constant, b varies as x, and the beam
is triangular in plan (Fig. 2.16).

Shear at the end of a beam necessitates modification of
the forms determined earlier. The area required to resist
shear is P/S, in a cantilever and R/S, in a simple beam. Dot-
ted extensions in Figs. 2.15 and 2.16 show the changes nec-
essary to enable these cantilevers to resist shear. The waste
in material and extra cost in fabricating, however, make
many of the forms impractical, except for cast iron. Figure
2.17 shows some of the simple sections of uniform
strength. In none of these, however, is shear taken into
account.
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Plan

NN

Elevation

MMM

FIGURE 2.15 Parabolic beam of uniform strength.

SAFE LOADS FOR BEAMS
OF VARIOUS TYPES

Table 2.2 gives 32 formulas for computing the approximate
safe loads on steel beams of various cross sections for an
allowable stress of 16,000 1b/in> (110.3 MPa). Use these
formulas for quick estimation of the safe load for any steel
beam you are using in a design.
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Etevation

FIGURE 2.16 Triangular beam of uniform strength.

Table 2.3 gives coefficients for correcting values in
Table 2.2 for various methods of support and loading.
When combined with Table 2.2, the two sets of formulas
provide useful time-saving means of making quick safe-
load computations in both the office and the field.
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TABLE 2.2 Approximate Safe Loads in Pounds (kgf) on Steel Beams”

(Beams supported at both ends, allowable fiber stress for steel, 16,000 Ib/in® (1.127 kgffcm?) (basis of table)
for iron, reduce values given in table by one-eighth)

Greatest safe load, 1b*

Deflection, in*

Shape of section Load in middle Load distributed Load in middle = Load distributed
. 890AD 1,780AD wlL? wL?
Solid rectangle E—
L L 32AD? 52AD?
Holl tanel 890(AD — ad) 1,780(AD — ad) wL? wiL?
ollow rectangle
£ L L 32AD? — ad®)  S2AD? — ad?)
667AD 1,333AD wl? w3
Solid cylind —_—
e eynder L L 24AD? 384D
. 667(AD — ad) 1,333(AD — ad) wL? wL?
Hollow cylinder >
L L 24(AD?* — ad?) 38(AD? — ad®)
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885AD 1.770AD wL3 wL?

Even-legged angle or t
ven-legged angle or tee 7 i 39AD" 2AD
1,525AD 3,050AD wL? WL
Channel or Z b AT 2I0A
annet or & bar L L 53AD? 85AD>
1,3804D 2,760AD wL? WL
Deck beam — e — i—— ——
L L 50AD? 80AD?
1,795AD 3,390AD w3 W
I beam — —_— e e
L L 58AD? 93AD?

L = distance between supports, ft (m); A = sectional area of beam, in? (cm?); D = depth of beam, in (cm);
=2 . . . 5 5 . N . .
N ¢ = interior area, in* (cm?); d = interior depth, in (cm); w = total working load, net tons (kgf).
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TABLE 2.3 Coefficients for Correcting Values in Table 2.2 for Various Methods
of Support and of Loading"

Max relative
deflection under

Max relative max relative safe
Conditions of loading safe load load
Beam supported at ends
Load uniformly distributed over span 1.0 1.0
Load concentrated at center of span A 0.80
Two equal loads symmetrically concentrated l/Ac¢
Load increasing uniformly to one end 0.974 0.976
Load increasing uniformly to center A 0.96
Load decreasing uniformly to center 3, 1.08
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Beam fixed at one end, cantilever

Load uniformly distributed over span A
Load concentrated at end Ye
Load increasing uniformly to fixed end A

Beam continuous over two supports equidistant from ends
Load uniformly distributed over span

1. If distance a > 0.2071/ Pl4a?
2. If distance a < 0.20711 /(1 - 4a)
3. If distance a = 0.2071/ 5.83
Two equal loads concentrated at ends l/4a

2.40
3.20
1.92

71 = length of beam; ¢ = distance from support to nearest concentrated load; a = distance from support to end

of beam.
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1. Fixep aT ONE END, LoAp P CONCENTRATED AT OTHER END

. levati
Beam Cross section I:ine (;, 2&1;: Formulas
B e X o]
a=P,
Elevation: bS,
i, top, straight
line; bottom, 6Pl
Rectangle: parabola. 2, h = B3
width (b) con- complete pa- ‘
stant, depth rabola
(y) variable
Plan: Deflection at A:
rectangle

-y
bE \h
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iable, depth Plan:
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bE \1
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FIGURE 2.17 Beams of uniform strength (in bending).
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FIGURE 2.17 (Continued) Beams of uniform strength (in bending).
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FIGURE 2.17 (Continued) Beams of uniform strength (in bending).
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ROLLING AND MOVING LOADS

Rolling and moving loads are loads that may change their
position on a beam or beams. Figure 2.18 shows a beam
with two equal concentrated moving loads, such as two
wheels on a crane girder, or the wheels of a truck on a
bridge. Because the maximum moment occurs where the
shear is zero, the shear diagram shows that the maximum
moment occurs under a wheel. Thus, with x < a/2:

R —P(1—3i+~1>
! I l

Pl( a 2x a 4x2>
-2 4
l [ 1 12

2x a
R,=P|1+———

Pl( a 24> N 2x 3a 4x2>

l ? I 2

M, max when x = Y,a

M, max when x = ¥,a

Pl a\> P a\?
Mmax:7 I —— =—\l-——=
2 21 21 2

Figure 2.19 shows the condition when two equal loads
are equally distant on opposite sides of the center of the
beam. The moment is then equal under the two loads.
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FIGURE 2.18 Two equal concentrated moving loads.

Shear

Moment

FIGURE 2.19 Two equal moving loads equally distant on oppo-
site sides of the center.
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If two moving loads are of unequal weight, the condi-
tion for maximum moment is the maximum moment occur-
ring under the heavier wheel when the center of the beam
bisects the distance between the resultant of the loads and
the heavier wheel. Figure 2.20 shows this position and the
shear and moment diagrams.

When several wheel loads constituting a system are on a
beam or beams, the several wheels must be examined in
turn to determine which causes the greatest moment. The
position for the greatest moment that can occur under a given

HITTTT

Shear

Moment
FIGURE 2.20 Two moving loads of unequal weight.
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wheel is, as stated earlier, when the center of the span
bisects the distance between the wheel in question and the
resultant of all loads then on the span. The position for max-
imum shear at the support is when one wheel is passing off
the span.

CURVED BEAMS

The application of the flexure formula for a straight beam
to the case of a curved beam results in error. When all
“fibers” of a member have the same center of curvature,
the concentric or common type of curved beam exists
(Fig. 2.21). Such a beam is defined by the Winkler—Bach
theory. The stress at a point y units from the centroidal
axis is

| za )
S=—|14+—"—o
AR Z(R +y)

M is the bending moment, positive when it increases curva-
ture; y is positive when measured toward the convex side; A
is the cross-sectional area; R is the radius of the centroidal
axis; Z is a cross-section property defined by

1 y
Z= —— dA
AJR+Yy

Analytical expressions for Z of certain sections are given
in Table 2.4. Z can also be found by graphical integration
methods (see any advanced strength book). The neutral
surface shifts toward the center of curvature, or inside fiber,
an amount equal to e = ZR/Z + 1). The Winkler—Bach
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TABLE 2.4 Analytical Expressions for Z

Section Expression
r—h
Z R R PR Yy £73
F———R —] h - C

l T
R

Fei A Z= -l *X[“"“*C')“b*’““(’“C"““"“"‘”]

C

!:__-|EZR_ andA =1C, — (b — 1) C3 + bC,

t

i R R+ C R+C

22}22%}_ Z=—-1+— bln( 2)Jr(t—b)ln< 1)
et A he o

1 " A=2[(t—b)C, + bGC)

fe——g —
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FIGURE 2.21 Curved beam.

theory, though practically satisfactory, disregards radial
stresses as well as lateral deformations and assumes pure
bending. The maximum stress occurring on the inside fiber
is § = Mh;/AeR;, whereas that on the outside fiber is S =
Mhy/AeR,.

The deflection in curved beams can be computed by
means of the moment-area theory.

The resultant deflection is then equal to A, = VA2 + A2
in the direction defined by tan 6 = A,/ A,. Deflections can
also be found conveniently by use of Castigliano’s theorem.
It states that in an elastic system the displacement in the
direction of a force (or couple) and due to that force (or cou-
ple) is the partial derivative of the strain energy with respect
to the force (or couple).

A quadrant of radius R is fixed at one end as shown in
Fig. 2.22. The force F is applied in the radial direction at
free-end B. Then, the deflection of B is
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By moment area,
y=Rsin® x=R(l —cos0)

ds =Rd60 M = FRsin 9

A wFR3 _FR?
B 4Rl By 2EI
d A= R3 \/ ks
an g = 1
.o - < AET >
a * = X R
=tan ! —
v
=325°
By Castigliano,
wFR? FR?
= A = —
s 4EI By 2FI

F B x

FIGURE 2.22 Quadrant with fixed end.
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Eccentrically Curved Beams

These beams (Fig. 2.23) are bounded by arcs having differ-
ent centers of curvature. In addition, it is possible for either
radius to be the larger one. The one in which the section
depth shortens as the central section is approached may be
called the arch beam. When the central section is the
largest, the beam is of the crescent type.

Crescent I denotes the beam of larger outside radius and
crescent II of larger inside radius. The stress at the central
section of such beams may be found from S = KMC/I.
In the case of rectangular cross section, the equation
becomes S = 6KM/bh?, where M is the bending moment, b
is the width of the beam section, and / its height. The stress
factors, K for the inner boundary, established from photo-
elastic data, are given in Table 2.5. The outside radius

FIGURE 2.23 Eccentrically curved beams.
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TABLE 2.5 Stress Factors for Inner Boundary at Central Section
(see Fig. 2.23)

1. For the arch-type beams

R, + R;
(a) K =0.834 + 1.504 —— i — <5
R, + R; h
h . R, + R,
(b) K=10.899 + 1.181 ——— if 5<—=—=<10
R, + R; h
(c) In the case of larger section ratios use the equivalent beam
solution
2. For the crescent I-type beams
h R, + R;
(a) K =0.570 + 1.536 ——— if = -<2
R, + R; h
h . R, + R;
(b) K =095 + 0.769 ——— if 2 < —=——=<20
R, + R, h
h 0.0298 R + R.
(¢) K=1092—F+ if ——>20
R, + R; h
3. For the crescent II-type beams
h . R, + R;
(a) K =0.897 + 1.098 ——— if —— <8
R, + R; h
0.0378 R + R.
(b)K:1.119(7) if g < —-<20
R, + R; h
h 0.0270 R + R
(¢) K =1.081 (*) if ° ~>20
R, + R; h

is denoted by R, and the inside by R, The geometry of
crescent beams is such that the stress can be larger in off-
center sections. The stress at the central section determined
above must then be multiplied by the position factor k,
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given in Table 2.6. As in the concentric beam, the neutral
surface shifts slightly toward the inner boundary. (See
Vidosic, “Curved Beams with Eccentric Boundaries,”
Transactions of the ASME, 79, pp. 1317-1321.)

ELASTIC LATERAL BUCKLING OF BEAMS

When lateral buckling of a beam occurs, the beam under-
goes a combination of twist and out-of-plane bending
(Fig. 2.24). For a simply supported beam of rectangular
cross section subjected to uniform bending, buckling occurs
at the critical bending moment, given by

I —
M, = —VEILGJ
cr L \/ y

where L = unbraced length of the member
E = modulus of elasticity
I, = moment of inertial about minor axis
G = shear modulus of elasticity
J = torsional constant

The critical moment is proportional to both the lateral
bending stiffness EI/L and the torsional stiffness of the
member GJ/L.

For the case of an open section, such as a wide-flange or
I-beam section, warping rigidity can provide additional tor-
sional stiffness. Buckling of a simply supported beam of open
cross section subjected to uniform bending occurs at the
critical bending moment, given by

TLFeBOOK



BEAM FORMULAS

™ T
M, = 7\/ E, (GJ + EC,
L ) L

89

where C,, is the warping constant, a function of cross-

sectional shape and dimensions (Fig. 2.25).

In the preceding equations, the distribution of bending
moment is assumed to be uniform. For the case of a nonuni-
form bending-moment gradient, buckling often occurs at

TABLE 2.6 Crescent-Beam Position Stress Factors
(see Fig. 2.23)

Angle 0, k
degree Inner Outer
10 1 + 0.055 H/h 1 + 0.03 H/h
20 1 + 0.164 H/h 1 + 0.10 H/h
30 1+ 0365H/h 1 + 0.25 H/h
40 1+ 0567TH/h 1 + 0.467 H/h
_ 12
50 1.521 — 05171 . ;;282 Hik) 1 + 0.733 H/h
(0.2416 — 0.6506 H/h)'"?
60 1.756 — 06506 1 + 1.123 H/h
0.4817 — 1.298 H/h)""?
70 2.070 — ( 0.6492 ) 1 + 1.70 H/h
0.2939 — 0.7084 H/h)'”
80 2.531 — ¢ 03542 ) 1 + 2.383 H/h
90 1 + 3.933 H/h

Note: All formulas are valid for 0 < H/h = 0.325. Formulas for the inner
boundary, except for 40 degrees, may be used to H/h = 0.36. H = distance
between centers.
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Compressive Stress

< 1 A ]
%7 Tensile Stress 7%7
N 1

)

FIGURE 2.24 (a) Simple beam subjected to equal end moments.
(b) Elastic lateral buckling of the beam.

a larger critical moment. Approximation of this critical

bending moment, M, may be obtained by multiplying M.,

given by the previous equations by an amplification factor
M ér = ChMcr

12'5Mmax
2.5M,y + 3M, + 4M, + 3M,

where C, =
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o

AREA A o, T—
i h w
3 A
A 3 3.3 3.3
vy =L (pep? -l U
Tad Cut 35 (6} +b%) e Bah +
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FIGURE 2.25 Torsion-bending constants for torsional buckling.
A = cross-sectional area; I, = moment of inertia about x—x axis;
I, = moment of inertia about y—y axis. (After McGraw-Hill, New
York). Bleich, F., Buckling Strength of Metal Structures.

and M, = absolute value of maximum moment in the
unbraced beam segment

M, = absolute value of moment at quarter point of
the unbraced beam segment

My = absolute value of moment at centerline of the
unbraced beam segment

M = absolute value of moment at three-quarter
point of the unbraced beam segment
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C,, equals 1.0 for unbraced cantilevers and for members
where the moment within a significant portion of the
unbraced segment is greater than, or equal to, the larger of
the segment end moments.

COMBINED AXIAL AND BENDING LOADS

For short beams, subjected to both transverse and axial
loads, the stresses are given by the principle of superposition
if the deflection due to bending may be neglected without
serious error. That is, the total stress is given with sufficient
accuracy at any section by the sum of the axial stress and
the bending stresses. The maximum stress, 1b/in?> (MPa),
equals

po b M
A I
where P = axial load, Ib (N)
A = cross-sectional area, in?> (mm?)
M = maximum bending moment, in 1b (Nm)

¢ = distance from neutral axis to outermost fiber at
the section where maximum moment occurs,
in (mm)

I = moment of inertia about neutral axis at that
section, in* (mm*)

When the deflection due to bending is large and the
axial load produces bending stresses that cannot be neglect-
ed, the maximum stress is given by
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P c
=—+ (M + Pd)—
f=o 0P

where d is the deflection of the beam. For axial compres-
sion, the moment Pd should be given the same sign as M;
and for tension, the opposite sign, but the minimum value
of M + Pd is zero. The deflection d for axial compression
and bending can be closely approximated by

L
1 — (PIP,)

where d, = deflection for the transverse loading alone, in
(mm); and P, = critical buckling load w?EI / L%, Ib (N).

UNSYMMETRICAL BENDING

When a beam is subjected to loads that do not lie in a plane
containing a principal axis of each cross section, unsym-
metrical bending occurs. Assuming that the bending axis of
the beam lies in the plane of the loads, to preclude torsion,
and that the loads are perpendicular to the bending axis, to
preclude axial components, the stress, 1b/in?> (MPa), at any
point in a cross section is

where M, = bending moment about principal axis XX,
in1b (Nm)

M, = bending moment about principal axis YV,
in Ib (Nm)
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x = distance from point where stress is to be
computed to YY axis, in (mm)
y = distance from point to XX axis, in (mm)

I, = moment of inertia of cross section about XX,
in (mm®)

I, = moment of inertia about Y'Y, in (mm*)

If the plane of the loads makes an angle 6 with a principal
plane, the neutral surface forms an angle o with the other
principal plane such that

I
tan o« = — tan 0
I,

ECCENTRIC LOADING

If an eccentric longitudinal load is applied to a bar in the
plane of symmetry, it produces a bending moment Pe,
where e is the distance, in (mm), of the load P from the
centroidal axis. The total unit stress is the sum of this
moment and the stress due to P applied as an axial load:

g B Pec :£<1 iﬁ)

A 1 A r?

where A = cross-sectional area, in?> (mm?)

¢ = distance from neutral axis to outermost fiber, in
(mm)
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1 = moment of inertia of cross section about neutral
axis, in* (mm?)

r = radius of gyration = y/A, in (mm)

Figure 2.1 gives values of the radius of gyration for several
Cross sections.

If there is to be no tension on the cross section under
a compressive load, e should not exceed r%/c. For a rectangular
section with width b, and depth d, the eccentricity, there-
fore, should be less than b/6 and d/6 (i.e., the load should
not be applied outside the middle third). For a circular cross
section with diameter D, the eccentricity should not exceed
DI8.

When the eccentric longitudinal load produces a deflec-
tion too large to be neglected in computing the bending
stress, account must be taken of the additional bending
moment Pd, where d is the deflection, in (mm). This deflec-
tion may be closely approximated by

_ 4ePIP,
w(l — PIP,)

P is the critical buckling load w2EI/L?, 1b (N).

If the load P, does not lie in a plane containing an axis
of symmetry, it produces bending about the two principal
axes through the centroid of the section. The stresses, 1b/in?
(MPa), are given by

= b Pas | Peg
oA I,

v

where A = cross-sectional area, in> (mm?)

e, = eccentricity with respect to principal axis YY,
in (mm)
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e, = eccentricity with respect to principal axis XX,
in (mm)
¢, = distance from YY to outermost fiber, in (mm)
¢, = distance from XX to outermost fiber, in (mm)
I, = moment of inertia about XX, in* (mm®*)

I, = moment of inertia about YY, in* (mm*)

The principal axes are the two perpendicular axes through
the centroid for which the moments of inertia are a maxi-
mum or a minimum and for which the products of inertia
are zero.

NATURAL CIRCULAR FREQUENCIES
AND NATURAL PERIODS OF VIBRATION
OF PRISMATIC BEAMS

Figure 2.26 shows the characteristic shape and gives con-
stants for determination of natural circular frequency w and
natural period 7, for the first four modes of cantilever,
simply supported, fixed-end, and fixed-hinged beams. To
obtain w, select the appropriate constant from Fig. 2.26 and
multiply it by VEI/wL*. To get T, divide the appropriate
constant by VEI/wL*.

In these equations,

= natural frequency, rad/s
W = beam weight, 1b per linear ft (kg per linear m)

L = beam length, ft (m)
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FIGURE 2.26 Coefficients for computing natural circular frequencies and natural periods of vibration of

prismatic beams.
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E = modulus of elasticity, 1b/in? (MPa)
I = moment of inertia of beam cross section, in* (mm®*)
T = natural period, s

To determine the characteristic shapes and natural peri-
ods for beams with variable cross section and mass, use the
Rayleigh method. Convert the beam into a lumped-mass
system by dividing the span into elements and assuming the
mass of each element to be concentrated at its center. Also,
compute all quantities, such as deflection and bending moment,
at the center of each element. Start with an assumed charac-
teristic shape.
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GENERAL CONSIDERATIONS

Columns are structural members subjected to direct com-
pression. All columns can be grouped into the following
three classes:

1. Compression blocks are so short (with a slenderness
ratio—that is, unsupported length divided by the least
radius of gyration of the member—below 30) that bend-
ing is not potentially occurring.

2. Columns so slender that bending under load is a given are
termed long columns and are defined by Euler’s theory.

3. Intermediate-length columns, often used in structural
practice, are called short columns.

Long and short columns usually fail by buckling when
their critical load is reached. Long columns are analyzed
using Euler’s column formula, namely,

nmEl  nm’EA

2 r?

In this formula, the coefficient n accounts for end condi-
tions. When the column is pivoted at both ends, n = 1;
when one end is fixed and the other end is rounded, n = 2;
when both ends are fixed, n = 4; and when one end is fixed
and the other is free, n = 0.25. The slenderness ratio sepa-
rating long columns from short columns depends on the
modulus of elasticity and the yield strength of the column
material. When Euler’s formula results in (P./A) > S,,
strength instead of buckling causes failure, and the column
ceases to be long. In quick estimating numbers, this critical
slenderness ratio falls between 120 and 150. Table 3.1 gives
additional column data based on Euler’s formula.
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TABLE 3.1 Strength of Round-Ended Columns According to Euler’s Formula®

Low- Medium-
Wrought carbon carbon
Material® Cast iron iron steel steel
Ultimate compressive strength, 1b/in? 107,000 53,400 62,600 89,000
Allowable compressive stress, Ib/in?

(maximum) 7,100 15,400 17,000 20,000
Modulus of elasticity 14,200,000 28,400,000 30,600,000 31,300,000
Factor of safety 8 5 5 5
Smallest / allowable at worst section, in* PI? PI? PI? PI?

17,500,000 56,000,000 60,300,000 61,700,000
Limit of ratio, I/r > 50.0 60.6 59.4 55.6

Rectangle (r = b\/T,z), b > 144 17.5 17.2 16.0

Circle (r = ‘/4d>, ld > 12.5 15.2 14.9 13.9

Circular ring of small thickness

<r = d\/‘7,;), I/d > 17.6 214 21.1 19.7

(P = allowable load, 1b; I = length of column, in; b = smallest dimension of a rectangular section, in; d = diameter of a

circular section, in; = least radius of gyration of section.)

*To convert to SI units, use: 1b/in> X 6.894 = kPa; in* X (25.4)* = mm*.
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otS Euler column

3 \—/ Critical L

8 Parabolic type

kS Straight -line

3 type

E_

S

Q

O L
Short Long r

FIGURE 3.1 L/r plot for columns.

SHORT COLUMNS

Stress in short columns can be considered to be partly due to
compression and partly due to bending. Empirical, rational
expressions for column stress are, in general, based on the
assumption that the permissible stress must be reduced below
that which could be permitted were it due to compression
only. The manner in which this reduction is made determines
the type of equation and the slenderness ratio beyond which
the equation does not apply. Figure 3.1 shows the curves for
this situation. Typical column formulas are given in Table 3.2.

ECCENTRIC LOADS ON COLUMNS

When short blocks are loaded eccentrically in compression
or in tension, that is, not through the center of gravity (cg),
a combination of axial and bending stress results. The
maximum unit stress S, is the algebraic sum of these two
unit stresses.
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TABLE 3.2 Typical Short-Column Formulas

Formula Material Code Slenderness ratio
2 /
S, = 17,000 — 0.485 (L) Carbon steels AISC — < 120
r r
1 . [
S, = 16,000 — 70 { — Carbon steels Chicago — < 120
r r
1 /
S, = 15,000 — 50 { — Carbon steels AREA — < 150
r r
i l
S, = 19,000 — 100 { — Carbon steels Am. Br. Co. 60 < — < 120
r r
i 159 [ 1\? . 1
S, = 135,000 — — Alloy-steel tubing ANC — <65
c r Ver
l l
S, = 9,000 — 40 (*) Cast iron NYC — <170
r r
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TABLE 3.2 Typical Short-Column Formulas (Continued)

Formula Material Code Slenderness ratio
. 245 (1 . 1
S, = 34,500 — — | — 2017ST aluminum ANC — <%
Ve \r Ver
. 05 (1Y) 1
'S = 5,000 — — <7> Spruce ANC — <72
¢ A\r Ver
S, =8,|1 Sy (1>2 Steel Joh ! <\/2"“2E
=8,11- — eels ohnson —
a7 dnm’E \ r r S,
S, l .
S = — Steels Secant — < critical
r

ec <l\/ P >
1+ —sec|—
r? r YV 4AE.

S, = theoretical maximum; ¢ = end fixity coefficient; ¢ = 2, both ends pivoted; ¢ = 2.86, one pivoted, other fixed;
¢ = 4, both ends fixed; ¢ = 1 one fixed, one free.
#is initial eccentricity at which load is applied to center of column cross section.
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I

FIGURE 3.2 Load plot for columns.

ng >0

In Fig. 3.2, a load, P, acts in a line of symmetry at the
distance e from cg; r = radius of gyration. The unit stresses
are (1) S, due to P, as if it acted through cg, and (2) S, due
to the bending moment of P acting with a leverage of e
about cg. Thus, unit stress, S, at any point y is

S=5 %8,
= (PIA) = Peyll
= S(1 * ey/r?)

Yy is positive for points on the same side of cg as P, and nega-
tive on the opposite side. For a rectangular cross section of
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width b, the maximum stress, S, = S.(1 + 6¢/b). When P
is outside the middle third of width b and is a compressive
load, tensile stresses occur.

For a circular cross section of diameter d, Sy, = S.(1 +
8e/d). The stress due to the weight of the solid modifies
these relations.

Note that in these formulas e is measured from the grav-
ity axis and gives tension when e is greater than one-sixth
the width (measured in the same direction as e), for rectan-
gular sections, and when greater than one-eighth the diam-
eter, for solid circular sections.

-t

3k

VA |
%
Z

FIGURE 3.3 Load plot for columns.
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If, as in certain classes of masonry construction, the
material cannot withstand tensile stress and, thus, no ten-
sion can occur, the center of moments (Fig. 3.3) is taken at
the center of stress. For a rectangular section, P acts at dis-
tance k from the nearest edge. Length under compression =
3k, and Sy, = 2/3Ii/hk. For a circular section, Sy, = [0.372 +
0.056(k/r)1Plk vV rk where r = radius and k = distance of P
from circumference. For a circular ring, S = average com-
pressive stress on cross section produced by P; e = eccen-
tricity of P; z = length of diameter under compression
(Fig. 3.4). Values of z/r and of the ratio of S,,,, to average S
are given in Tables 3.3 and 3.4.

FIGURE 3.4 Circular column load plot.
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TABLE 3.3 Values of the Ratio z/r

(See Fig. 3.5)

r 0.0 0.5 0.6 0.7 0.8 0.9 1.0 r
0.25 2.00 0.25
0.30 1.82 0.30
0.35 1.66 1.89 1.98 0.35
0.40 1.51 1.75 1.84 1.93 0.40
0.45 1.37 1.61 1.71 1.81 1.90 0.45
0.50 1.23 1.46 1.56 1.66 1.78 1.89 2.00 0.50
0.55 1.10 1.29 1.39 1.50 1.62 1.74 1.87 0.55
0.60 0.97 1.12 1.21 1.32 1.45 1.58 1.71 0.60
0.65 0.84 0.94 1.02 1.13 1.25 1.40 1.54 0.65
0.70 0.72 0.75 0.82 0.93 1.05 1.20 1.35 0.70
0.75 0.59 0.60 0.64 0.72 0.85 0.99 1.15 0.75
0.80 0.47 0.47 0.48 0.52 0.61 0.77 0.94 0.80
0.85 0.35 0.35 0.35 0.36 0.42 0.55 0.72 0.85
0.90 0.24 0.24 0.24 0.24 0.24 0.32 0.49 0.90
0.95 0.12 0.12 0.12 0.12 0.12 0.12 0.25 0.95
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TABLE 3.4 Values of the Ratio S,/

(In determining S average, use load P divided by total area of cross section)

r 0.0 0.5 0.6 0.7 0.8 0.9 1.0 r
0.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.00
0.05 1.20 1.16 1.15 1.13 1.12 1.11 1.10 0.05
0.10 1.40 1.32 1.29 1.27 1.24 1.22 1.20 0.10
0.15 1.60 1.48 1.44 1.40 1.37 1.33 1.30 0.15
0.20 1.80 1.64 1.59 1.54 1.49 1.44 1.40 0.20
0.25 2.00 1.80 1.73 1.67 1.61 1.55 1.50 0.25
0.30 2.23 1.96 1.88 1.81 1.73 1.66 1.60 0.30
0.35 2.48 2.12 2.04 1.94 1.85 .77 1.70 0.35
0.40 2.76 2.29 2.20 2.07 1.98 1.88 1.80 0.40
0.45 3.11 2.51 2.39 2.23 2.10 1.99 1.90 0.45
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The kern is the area around the center of gravity of
a cross section within which any load applied produces
stress of only one sign throughout the entire cross
section. Outside the kern, a load produces stresses of
different sign. Figure 3.5 shows kerns (shaded) for various
sections.

For a circular ring, the radius of the kern r =
D[1+(d/D)1/8.

For a hollow square (H and h = lengths of outer and
inner sides), the kern is a square similar to Fig. 3.5a, where

FIGURE 3.5 Column characteristics.
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_ 71 1+<£>2 = 0.1179H 1—<i>2
Tmin = 76" 2 H) |~ “\H

For a hollow octagon, R, and R; = radii of circles cir-
cumscribing the outer and inner sides; thickness of wall =
0.9239(R, — R)); and the kern is an octagon similar to Fig. 3.5¢,
where 0.2256R becomes 0.2256R,[1 + (R;/R,)?].

COLUMN BASE PLATE DESIGN

Base plates are usually used to distribute column loads over
a large enough area of supporting concrete construction that
the design bearing strength of the concrete is not exceeded.
The factored load, P,, is considered to be uniformly distrib-
uted under a base plate.

The nominal bearing strength f, kip/in® or ksi (MPa) of
the concrete is given by

f:085f’\/z and \/ﬂ<2
p =YY A -

where f. = specified compressive strength of concrete,
ksi (MPa)

A, = area of the base plate, in?> (mm?)

A, = area of the supporting concrete that is geo-
metrically similar to and concentric with the

loaded area, in? (mm?)

In most cases, the bearing strength, f, is 0.85f/, when
the concrete support is slightly larger than the base plate or
1.7f, when the support is a spread footing, pile cap, or mat
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foundation. Therefore, the required area of a base plate for
a factored load P, is

Pll
A =—7—
¢ 0.85f!
where ¢, is the strength reduction factor = 0.6. For a wide-
flange column, A, should not be less than b,d, where by is
the flange width, in (mm), and d is the depth of column,
in (mm).
The length N, in (mm), of a rectangular base plate for a
wide-flange column may be taken in the direction of d as

N = \/Af1 +A>d or A = 0.5(0.95d — 0.80b))
The width B, in (mm), parallel to the flanges, then, is

_ AL
N

B

The thickness of the base plate z,, in (mm), is the largest
of the values given by the equations that follow:

. \/ 2P,

» ="V 0.9F,BN
\/ 2P,

L,=n\| ———-—

’ 0.9F, BN

t — A !V 2Pl4

» ="V 09F,BN

where m = projection of base plate beyond the flange
and parallel to the web, in (mm)
= (N — 0.95d)/2
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n = projection of base plate beyond the edges of the
flange and perpendicular to the web, in (mm)
= (B — 0.80b/2
n' = \/(Thf)/4
A =@/ + V(1 - X1 =10
X = [(4 dbpld + bf)z][Pu/(¢> X 0.85f,. A))]

AMERICAN INSTITUTE OF STEEL
CONSTRUCTION ALLOWABLE-STRESS
DESIGN APPROACH

The lowest columns of a structure usually are supported on
a concrete foundation. The area, in square inches (square
millimeters), required is found from:

where P is the load, kip (N) and F), is the allowable bearing
pressure on support, ksi (MPa).

The allowable pressure depends on strength of concrete
in the foundation and relative sizes of base plate and con-
crete support area. If the base plate occupies the full area of
the support, F,, = 0.35f!, where f is the 28-day compres-
sive strength of the concrete. If the base plate covers less
than the full area, Fp = 0.35f VA,/A, = 0.70f, where A,
is the base-plate area (B X N), and A, is the full area of the
concrete support.
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Eccentricity of loading or presence of bending moment
at the column base increases the pressure on some parts
of the base plate and decreases it on other parts. To com-
pute these effects, the base plate may be assumed com-
pletely rigid so that the pressure variation on the concrete
is linear.

Plate thickness may be determined by treating projections
m and n of the base plate beyond the column as cantilevers.

E
~ 7& 7
0 | —
~
[~
)
/ '\“ @

Ld 1.
= I 14, 2 / FOR COLUMNS
E N 172\ 10" OR LARGER
N
0
~ d

b

m | 0.95d m
1

e
by 1

FIGURE 3.6 Column welded to a base plate.
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The cantilever dimensions m and n are usually defined as
shown in Fig. 3.6. (If the base plate is small, the area of the
base plate inside the column profile should be treated as a
beam.) Yield-line analysis shows that an equivalent can-
tilever dimension n' can be defined as n’ = '/;y/db;, and
the required base plate thickness #, can be calculated from

t, = 21\/f—”
Fy

where [ = max (m, n,n'), in (mm)
f, = PI(BN) = F,, ksi (MPa)

F, = yield strength of base plate, ksi (MPa)

P = column axial load, kip (N)

For columns subjected only to direct load, the welds of
column to base plate, as shown in Fig. 3.6, are required
principally for withstanding erection stresses. For columns
subjected to uplift, the welds must be proportioned to resist
the forces.

COMPOSITE COLUMNS

The AISC load-and-resistance factor design (LRFD) speci-
fication for structural steel buildings contains provisions for
design of concrete-encased compression members. It sets
the following requirements for qualification as a composite
column: The cross-sectional area of the steel core—shapes,
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pipe, or tubing—should be at least 4 percent of the total
composite area. The concrete should be reinforced with
longitudinal load-carrying bars, continuous at framed levels,
and lateral ties and other longitudinal bars to restrain the
concrete; all should have at least 1!/ in (38.1 mm) of clear
concrete cover. The cross-sectional area of transverse and
longitudinal reinforcement should be at least 0.007 in?
(4.5 mm?) per in (mm) of bar spacing. Spacing of ties
should not exceed two-thirds of the smallest dimension of
the composite section. Strength of the concrete f! should
be between 3 and 8 ksi (20.7 and 55.2 MPa) for normal-
weight concrete and at least 4 ksi (27.6 MPa) for light-
weight concrete. Specified minimum yield stress F), of steel
core and reinforcement should not exceed 60 ksi (414
MPa). Wall thickness of steel pipe or tubing filled with
concrete should be at least 5VF,/3E or DVF,/8E, where b is
the width of the face of a rectangular section, D is the out-
side diameter of a circular section, and E is the elastic mod-
ulus of the steel.

The AISC LRFD specification gives the design strength
of an axially loaded composite column as ¢P,, where ¢ =
0.85 and P, is determined from

bP, = 0.854,F,
For\.=1.5
F = 0.658"F,,
For A\, > 1.5
~ 0877
Fcr - )\2 my
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where N, = (KL/r,,mVF,,/E,,
KL = effective length of column in (mm)
A, = gross area of steel core in?> (mm?)
Foy = F, + e,F,(AJA) + e, f/(AJA)
E, = E + ¢;E(A,JA)

r,, = radius of gyration of steel core, in = 0.3 of the
overall thickness of the composite cross section
in the plane of buckling for steel shapes

A, = cross-sectional area of concrete in?> (mm?)

A, = area of longitudinal reinforcement in?> (mm?)
E, = elastic modulus of concrete ksi (MPa)

F,, = specified minimum yield stress of longitudi-

nal reinforcement, ksi (MPa)

For concrete-filled pipe and tubing, ¢; = 1.0, ¢, = 0.85,
and ¢; = 0.4. For concrete-encased shapes, ¢; = 0.7, ¢, =
0.6, and ¢; = 0.2.

When the steel core consists of two or more steel
shapes, they should be tied together with lacing, tie plates,
or batten plates to prevent buckling of individual shapes
before the concrete attains 0.75 f.

The portion of the required strength of axially loaded
encased composite columns resisted by concrete should be
developed by direct bearing at connections or shear connec-
tors can be used to transfer into the concrete the load applied
directly to the steel column. For direct bearing, the design
strength of the concrete is 1.7¢. f! A,, where ¢, = 0.65 and
A, = loaded area, in? (mm?). Certain restrictions apply.
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ELASTIC FLEXURAL BUCKLING
OF COLUMNS

Elastic buckling is a state of lateral instability that occurs
while the material is stressed below the yield point. It is of
special importance in structures with slender members. Euler’s
formula for pin-ended columns (Fig. 3.7) gives valid results
for the critical buckling load, kip (N). This formula is, with
L/r as the slenderness ratio of the column,

_ mEA
(Liry

where E = modulus of elasticity of the column material,
psi (Mpa)
A = column cross-sectional area, in?> (mm?)

r = radius of gyration of the column, in (mm)

Figure 3.8 shows some ideal end conditions for slender
columns and corresponding critical buckling loads. Elastic
critical buckling loads may be obtained for all cases by sub-
stituting an effective length KL for the length L of the
pinned column, giving

w2 EA
P=———
(KLIr)?

In some cases of columns with open sections, such as a
cruciform section, the controlling buckling mode may be
one of twisting instead of lateral deformation. If the warp-
ing rigidity of the section is negligible, rorsional buckling
in a pin-ended column occurs at an axial load of
GJA

1,

P =
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- P $ P
s

y(x)

M(X)

o 4

M(X)

> 6

(a) (b)

FIGURE 3.7 (a) Buckling of a pin-ended column under axial
load. (b) Internal forces hold the column in equilibrium.

where G = shear modulus of elasticity
J = torsional constant

A

cross-sectional area

I, = polar moment of inertia = I, + I,
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If the section possesses a significant amount of warping
rigidity, the axial buckling load is increased to

A < wEC, )
P=—(GJ+
L?

where C,, is the warping constant, a function of cross-sectional
shape and dimensions.

ALLOWABLE DESIGN LOADS FOR
ALUMINUM COLUMNS

Euler’s equation is used for long aluminum columns, and
depending on the material, either Johnson’s parabolic or
straight-line equation is used for short columns. These
equations for aluminum follow:

Euler’s equation:

cm’E

F, =
(Lip)*

Johnson’s generalized equation:

L/ n
= |1 - k[

[ cE

FCC
The value of n, which determines whether the short col-
umn formula is the straight-line or parabolic type, is selected
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from Table 3.5. The transition from the long to the short
column range is given by

<L> \/kcE
—er = T
p F

ce

where F, = allowable column compressive stress

F.. = column yield stress and is given as a function
of F, (compressive yield stress)

L = length of column

p = radius of gyration of column

E = modulus of elasticity—noted on nomograms
¢ = column-end fixity from Fig. 3.9

n, K, k = constants from Table 3.5

P P P
P P
P -t
|
| |
| I
: Restraining bulk- }
I |
[T IR I
P 7
¢= 125 fo 150 P P
c=1.00 c= 200 c=40

FIGURE 3.9 Values of ¢, column-end fixity, for determining the
critical L/p ratio of different loading conditions.
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TABLE 3.5 Material Constants for Common Aluminum Alloys

Average

Values

Type Johnson
Material psi MPa psi MPa K k n equation

14S-T4 34,000 234.4 39,800 2744 0.385  3.00 1.0 Straight line
24S-T3 and T4 40,000 275.8 48,000 3309  0.385  3.00 1.0 Straight line
61S-T6 35,000 241.3 41,100 283.4 0385  3.00 1.0 Straight line
14S-T6 57,000 393.0 61,300 4227 0.250  2.00 2.0  Squared parabolic
75S-T6 69,000 475.8 74,200 S511.6  0.250  2.00 2.0  Squared parabolic
Ref: ANC-5.
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ULTIMATE STRENGTH DESIGN
CONCRETE COLUMNS

At ultimate strength P, kip (N), columns should be capable
of sustaining loads as given by the American Concrete
Institute required strength equations in Chap. 5, “Concrete
Formulas™ at actual eccentricities. P,, may not exceed &P,
where ¢ is the capacity reduction factor and P,, kip (N), is
the column ultimate strength. If P,, kip (N), is the column
ultimate strength with zero eccentricity of load, then

P, =085fi(A, — AW + f, Aq
where f, = yield strength of reinforcing steel, ksi (MPa)

f! = 28-day compressive strength of concrete,
ksi (MPa)

A

. = gross area of column, in? (mm?)

A, = area of steel reinforcement, in> (mm?)

For members with spiral reinforcement then, for axial loads
only,

P,= 0.856P,
For members with tie reinforcement, for axial loads only,
P,= 0.800P,

Eccentricities are measured from the plastic centroid.
This is the centroid of the resistance to load computed for
the assumptions that the concrete is stressed uniformly to
0.85 f. and the steel is stressed uniformly to f,.

The axial-load capacity P, kip (N), of short, rectangular
members subject to axial load and bending may be deter-
mined from
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P, = $0.85f:ba + A\ f, — A f)
Pe = qs[o.ss flba <d - %) +ALfd—d )]

where e’ = eccentricity, in (mm), of axial load at end of
member with respect to centroid of tensile
reinforcement, calculated by conventional meth-
ods of frame analysis

b = width of compression face, in (mm)

a = depth of equivalent rectangular compressive-
stress distribution, in (mm)

A! = area of compressive reinforcement, in? (mm?)
A, = area of tension reinforcement, in?> (mm?)

d = distance from extreme compression surface to
centroid of tensile reinforcement, in (mm)

d' = distance from extreme compression surface to
centroid of compression reinforcement, in
(mm)

f, = tensile stress in steel, ksi (MPa)

The two preceding equations assume that a does not
exceed the column depth, that reinforcement is in one or
two faces parallel to axis of bending, and that reinforce-
ment in any face is located at about the same distance from
the axis of bending. Whether the compression steel actually
yields at ultimate strength, as assumed in these and the fol-
lowing equations, can be verified by strain compatibility
calculations. That is, when the concrete crushes, the strain
in the compression steel, 0.003 (¢ — d')/c, must be larger
than the strain when the steel starts to yield, f,/E;. In this
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case, ¢ is the distance, in (mm), from the extreme compres-
sion surface to the neutral axis and E; is the modulus of
elasticity of the steel, ksi (MPa).

The load P, for balanced conditions can be computed
from the preceding P, equation with f; = £, and

a = a,
= Bicy
87,000 B,d
87,000 + f,

The balanced moment, in. - kip (k - Nm), can be obtained
from

M, = Pye,

-6 [0.85ﬂ ba,,<d —d" - %)

+Af,d—d —d')+ Asfyd”}

where ¢, is the eccentricity, in (mm), of the axial load with
respect to the plastic centroid and d" is the distance, in (mm),
from plastic centroid to centroid of tension reinforcement.

When P, is less than P, or the eccentricity, e, is greater
than e, tension governs. In that case, for unequal tension
and compression reinforcement, the ultimate strength is

P, = 0.85f'bdd {p'm' — om + <1 - ed >

r\2 ’ d/
+\/<1— Z) +2|:(pm—p’m')2 +p’m’(1— d)]
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where m = f,/0.85f;
m =m-—1
p=A,/bd

o = Allbd

Special Cases of Reinforcement

For symmetrical reinforcement in two faces, the preceding
P, equation becomes

P, =085 bdbi—p+ 1 — Z

A=) 2|l -5) -]

Column Strength When Compression Governs

For no compression reinforcement, the P, equation becomes

P, = 0.85fbdp| —pm + 1 —
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When P, is greater than Py, or e is less than e;, compression
governs. In that case, the ultimate strength is approximately

M,
M,

Pu:Pa_(Po_Pb)

0

P
P =
“ 1 + (P,/P, — 1)(eley)

where M, is the moment capacity under combined axial
load and bending, in kip (k Nm) and P, is the axial-load
capacity, kip (N), of member when concentrically loaded,
as given.

For symmetrical reinforcement in single layers, the ulti-
mate strength when compression governs in a column with
depth, &, may be computed from

Alf, bhf! )
P, = . +
" ¢<e/d —d + 05 3held? + 1.18

Circular Columns

Ultimate strength of short, circular members with bars in a
circle may be determined from the following equations:

When tension controls,

0.85¢ > pmD,
P, = 085f.D> \/(— - 0.38) s
‘ D¢ D 2.5D

B <0.85e B 0.38>
D
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where D = overall diameter of section, in (mm)
D, = diameter of circle through reinforcement, in
(mm)
pr = AulA,

When compression governs,

Aty

P o= | —sly
! ¢|:36/DS+1

A fe
+
9.6D,/(0.8D + 0.67D,7 + 1.18

The eccentricity for the balanced condition is given approxi-
mately by

e, = (0.24 — 0.39 p,m)D

Short Columns

Ultimate strength of short, square members with depth, 4,
and with bars in a circle may be computed from the follow-
ing equations:

When tension controls,

e 2 D
P, = 0.85bhf ¢ \/ S 05] 4067 pm
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When compression governs,

Agf,
3e/D; + 1

A fe
+
12hel(h + 0.67D,) + 1.18

PM:¢[

Slender Columns

When the slenderness of a column has to be taken into account,
the eccentricity should be determined from e = M /P,
where M. is the magnified moment.
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ALLOWABLE LOADS ON PILES

A dynamic formula extensively used in the United States to
determine the allowable static load on a pile is the Engi-
neering News formula. For piles driven by a drop hammer,
the allowable load is

2WH
pt1

a

For piles driven by a steam hammer, the allowable load is

2WH
P, =—""
p + 0.1

where P, = allowable pile load, tons (kg)
W = weight of hammer, tons (kg)
H = height of drop, ft (m)
p = penetration of pile per blow, in (mm)

The preceding two equations include a factor of safety of 6.

For a group of piles penetrating a soil stratum of good
bearing characteristics and transferring their loads to the
soil by point bearing on the ends of the piles, the total
allowable load would be the sum of the individual allow-
able loads for each pile. For piles transferring their loads to
the soil by skin friction on the sides of the piles, the total
allowable load would be less than the sum on the individual
allowable loads for each pile, because of the interaction of
the shearing stresses and strains caused in the soil by each
pile.
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LATERALLY LOADED VERTICAL PILES

Vertical-pile resistance to lateral loads is a function of both
the flexural stiffness of the shaft, the stiffness of the bearing
soil in the upper 4 to 6D length of shaft, where D = pile
diameter and the degree of pile-head fixity.

The lateral-load vs. pile-head deflection relationship is
developed from charted nondimensional solutions of Reese
and Matlock. The solution assumes the soil modulus K to
increase linearly with depth z; that is, K = n,z, where n;, =
coefficient of horizontal subgrade reaction. A characteristic
pile length T is calculated from

\/ EIl
T=1—
n,
where EI = pile stiffness. The lateral deflection y of a pile

with head free to move and subject to a lateral load P, and
moment M, applied at the ground line is given by

T3 T?
y=AP—+BM—
© U EI EI
where A, and B, are nondimensional coefficients. Non-
dlmensmnal coefﬁcnents are also available for evaluation of
pile slope, moment, shear, and soil reaction along the shaft.
For positive moment,

M=A,P,T+ B, M,

m

Positive M, and P, values are represented by clockwise
moment and loads directed to the right on the pile head at
the ground line. The coefficients applicable to evaluation of
pile-head deflection and to the maximum positive moment
and its approximate position on the shaft, z/7, where
z = distance below the ground line, are listed in Table 4.1.

TLFeBOOK



134 CHAPTER FOUR

TABLE 4.1 Percentage of Base Load Transmitted to

Rock Socket
E,IE,

L,/d, 0.25 1.0 4.0
0.5 54% 48 44
1.0 31 23 18
1.5 177 12 8t
2.0 137 8 4

"Estimated by interpretation of finite-element solution;
for Poisson’s ratio = 0.26.

The negative moment imposed at the pile head by pile-
cap or another structural restraint can be evaluated as a
function of the head slope (rotation) from

_ APT  BE

! B, B,T

where 6, rad represents the counterclockwise (+) rotation
of the pile head and Ay and By are coefficients (see Table
4.1). The influence of the degrees of fixity of the pile head
on y and M can be evaluated by substituting the value of
—M, from the preceding equation into the earlier y and M
equations. Note that, for the fixed-head case,

PT? AyB,
¥ = 4, -
el """ B,

TOE CAPACITY LOAD

For piles installed in cohesive soils, the ultimate tip load
may be computed from
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On = Apg =A,Ncc, 4.1
where A, = end-bearing area of pile
q = bearing capacity of soil
N, = bearing-capacity factor

¢, = undrained shear strength of soil within zone
1 pile diameter above and 2 diameters below
pile tip

Although theoretical conditions suggest that N. may vary
between about 8 and 12, N, is usually taken as 9.

For cohesionless soils, the toe resistance stress, ¢, is
conventionally expressed by Eq. (4.1) in terms of a bearing-
capacity factor N, and the effective overburden pressure at
the pile tip o7,

qg=Noyw =q (4.2)

Some research indicates that, for piles in sands, ¢, like f,,
reaches a quasi-constant value, ¢, after penetrations of the
bearing stratum in the range of 10 to 20 pile diameters.
Approximately:

/= 0.5N, tan ¢ 4.3)

where ¢ is the friction angle of the bearing soils below the
critical depth. Values of N, applicable to piles are given in
Fig. 4.1. Empirical correlations of soil test data with ¢ and
q, have also been applied to predict successfully end-bear-
ing capacity of piles in sand.
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FIGURE 4.1 Bearing-capacity factor for granular soils related to
angle of internal friction.

GROUPS OF PILES

A pile group may consist of a cluster of piles or several piles
in a row. The group behavior is dictated by the group geom-
etry and the direction and location of the load, as well as by
subsurface conditions.

Ultimate-load considerations are usually expressed in
terms of a group efficiency factor, which is used to reduce
the capacity of each pile in the group. The efficiency factor
E, is defined as the ratio of the ultimate group capacity
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to the sum of the ultimate capacity of each pile in the
group.

E, is conventionally evaluated as the sum of the ultimate
peripheral friction resistance and end-bearing capacities of
a block of soil with breadth B, width W, and length L,
approximately that of the pile group. For a given pile, spac-
ing S and number of piles n,

2(BL + WL)f. + BW.
E, = ( nQ)fS £ 4.4)

where f, is the average peripheral friction stress of block
and Q, is the single-pile capacity. The limited number of
pile-group tests and model tests available suggest that for
cohesive soils E, > 1 if S is more than 2.5 pile diameters
D and for cohesionless soils E, > 1 for the smallest practi-
cal spacing. A possible exception might be for very short,
heavily tapered piles driven in very loose sands.

In practice, the minimum pile spacing for conventional
piles is in the range of 2.5 to 3.0D. A larger spacing is typi-
cally applied for expanded-base piles.

A very approximate method of pile-group analysis cal-
culates the upper limit of group drag load, Q4 from

Q.4 = ApyeHr + PHc, 4.5)

where Hy, vy, and Ay represent the thickness, unit weight,
and area of fill contained within the group. P, H, and c, are
the circumference of the group, the thickness of the consoli-
dating soil layers penetrated by the piles, and their
undrained shear strength, respectively. Such forces as Q,q
could only be approached for the case of piles driven to
rock through heavily surcharged, highly compressible sub-
soils.
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Design of rock sockets is conventionally based on
m
Qd = TrdsLsz + Tdszqa (46)

where Q, = allowable design load on rock socket

d, = socket diameter

L, = socket length
T

q, = allowable bearing pressure on rock

allowable concrete-rock bond stress

Load-distribution measurements show, however, that much
less of the load goes to the base than is indicated by Eq.
(4.6). This behavior is demonstrated by the data in Table
4.1, where L/d; is the ratio of the shaft length to shaft
diameter and E,/E, is the ratio of rock modulus to shaft
modulus. The finite-element solution summarized in Table
4.1 probably reflects a realistic trend if the average socket-
wall shearing resistance does not exceed the ultimate fp
value; that is, slip along the socket side-wall does not occur.

A simplified design approach, taking into account approxi-
mately the compatibility of the socket and base resistance,
is applied as follows:

1. Proportion the rock socket for design load Q, with Eq.
(4.6) on the assumption that the end-bearing stress is
less than g, [say g,/4, which is equivalent to assuming
that the base load Q,, = (w/4) d2q,/4].

2. Calculate Q, = RQ, where R is the base-load ratio
interpreted from Table 4.1.

3. If RQ, does not equal the assumed Q,, repeat the proce-
dure with a new ¢, value until an approximate conver-
gence is achieved and g = ¢,
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The final design should be checked against the established
settlement tolerance of the drilled shaft.

Following the recommendations of Rosenberg and
Journeaux, a more realistic solution by the previous method
is obtained if fy, is substituted for f;. Ideally, fz, should be
determined from load tests. If this parameter is selected
from data that are not site specific, a safety factor of at least
1.5 should be applied to fz, in recognition of the uncertain-
ties associated with the UC strength correlations (Rosen-
berg, P. and Journeaux, N. L., “Friction and End-Bearing
Tests on Bedrock for High-Capacity Socket Design,” Cana-
dian Geotechnical Journal, 13(3)).

FOUNDATION-STABILITY ANALYSIS

The maximum load that can be sustained by shallow foun-
dation elements at incipient failure (bearing capacity) is a
function of the cohesion and friction angle of bearing soils
as well as the width B and shape of the foundation. The net
bearing capacity per unit area, ¢,, of a long footing is con-
ventionally expressed as

Gy = ¢, N. + oy ,N, + BsYBN, 4.7)

where o, = 1.0 for strip footings and 1.3 for circular and
square footings

undrained shear strength of soil

o
=
Il

o,, = effective vertical shear stress in soil at level
of bottom of footing

B; = 0.5 for strip footings, 0.4 for square foot-
ings, and 0.6 for circular footings
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v = unit weight of soil

B = width of footing for square and rectangular
footings and radius of footing for circular
footings

N., N,, N, = bearing-capacity factors, functions of angle
of internal friction ¢

For undrained (rapid) loading of cohesive soils, & = 0
and Eq. (4.7) reduces to

q,=Ncc, (4.8)

where N/ = a; N,. For drained (slow) loading of cohesive
soils, & and ¢, are defined in terms of effective friction
angle ¢’ and effective stress c;,.

Modifications of Eq. (4.7) are also available to predict the
bearing capacity of layered soil and for eccentric loading.

Rarely, however, does ¢, control foundation design when
the safety factor is within the range of 2.5 to 3. (Should
creep or local yield be induced, excessive settlements may
occur. This consideration is particularly important when
selecting a safety factor for foundations on soft to firm
clays with medium to high plasticity.)

Equation (4.7) is based on an infinitely long strip foot-
ing and should be corrected for other shapes. Correction
factors by which the bearing-capacity factors should be
multiplied are given in Table 4.2, in which L = footing
length.

The derivation of Eq. (4.7) presumes the soils to be homo-
geneous throughout the stressed zone, which is seldom the
case. Consequently, adjustments may be required for depar-
tures from homogeneity. In sands, if there is a moderate vari-
ation in strength, it is safe to use Eq. (4.7), but with bearing-
capacity factors representing a weighted average strength.
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TABLE 4.2 Shape Corrections for Bearing-Capacity Factors of
Shallow Foundations®

Correction factor

Shape of
foundation N, N, N,
Rectangle* 1 + (£><ﬁ> 1+ <£) tand 1 —04 (£>
L)\N, L L
Circle and N
square 1+ (#) 1 + tan ¢ 0.60

fAfter De Beer, E. E., as modified by Vesic, A. S. See Fang, H. Y., Founda-
tion Engineering Handbook, 2d ed., Van Nostrand Reinhold, New York.
No correction factor is needed for long-strip foundations.

Eccentric loading can have a significant impact on
selection of the bearing value for foundation design. The
conventional approach is to proportion the foundation to
maintain the resultant force within its middle third. The
footing is assumed to be rigid and the bearing pressure is
assumed to vary linearly as shown by Fig. (4.2b.) If the
resultant lies outside the middle third of the footing, it is
assumed that there is bearing over only a portion of the
footing, as shown in Fig. (4.2d.) For the conventional case,
the maximum and minimum bearing pressures are

P 6e
=—|1x— 4.9
G BL< B) 4.9)

where B = width of rectangular footing

L = length of rectangular footing

e = eccentricity of loading

For the other case (Fig. 4.3¢), the soil pressure ranges from
0 to a maximum of
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_ 2P

3L(B/2 — e) (4.10)

dm

For square or rectangular footings subject to overturning
about two principal axes and for unsymmetrical footings,
the loading eccentricities e; and e, are determined about the
two principal axes. For the case where the full bearing area
of the footings is engaged, ¢, is given in terms of the dis-
tances from the principal axes, ¢; and c,, the radius of gyra-
tion of the footing area about the principal axes r; and r»,
and the area of the footing A as

—£<1+@+ e2c2> @.11)
dm A r% r% :

(a) id © _‘_e__TP

le— 3(%—8)—»

DZL
Ty B
(b) {d)
FIGURE 4.2 Footings subjected to overturning.

TLFeBOOK



PILES AND PILING FORMULAS 143

For the case where only a portion of the footing is bearing,
the maximum pressure may be approximated by trial and
error.

For all cases of sustained eccentric loading, the maxi-
mum (edge) pressures should not exceed the shear strength
of the soil and also the factor of safety should be at least 1.5
(preferably 2.0) against overturning.

AXIAL-LOAD CAPACITY OF SINGLE PILES

Pile capacity O, may be taken as the sum of the shaft and
toe resistances, O, and Q,, respectively.

The allowable load Q, may then be determined from
either Eq. (4.12) or (4.13):

_ qu + Qbu

Q=75 (4.12)
_ qu Qbu

0,= 7F1 + 7F2 (4.13)

where F, F|, and F, are safety factors. Typically, F for
permanent structures is between 2 and 3, but may be larg-
er, depending on the perceived reliability of the analysis
and construction as well as the consequences of failure.
Equation (4.13) recognizes that the deformations required
to fully mobilize Q,, and Q,, are not compatible. For
example, Q,, may be developed at displacements less
than 0.25 in (6.35 mm), whereas O, may be realized at
a toe displacement equivalent to 5 percent to 10 percent
of the pile diameter. Consequently, F; may be taken as
1.5 and F, as 3.0, if the equivalent single safety factor
equals F or larger. (If Q,/0,,<1.0, F is less than the
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2.0 usually considered as a major safety factor for perma-
nent structures.)

SHAFT SETTLEMENT

Drilled-shaft settlements can be estimated by empirical cor-
relations or by load-deformation compatibility analyses. Other
methods used to estimate settlement of drilled shafts, singly
or in groups, are identical to those used for piles. These
include elastic, semiempirical elastic, and load-transfer solu-
tions for single shafts drilled in cohesive or cohesionless
soils.

Resistance to tensile and lateral loads by straight-shaft
drilled shafts should be evaluated as described for pile
foundations. For relatively rigid shafts with characteristic
length T greater than 3, there is evidence that bells increase
the lateral resistance. The added ultimate resistance to uplift
of a belled shaft Q, can be approximately evaluated for
cohesive soils models for bearing capacity [Eq. (4.14)] and
friction cylinder [Eq. (4.15)] as a function of the shaft
diameter D and bell diameter D, (Meyerhof, G. G. and
Adams, J. 1., “The Ultimate Uplift Capacity of Founda-
tions,” Canadian Geotechnical Journal, 5(4):1968.)

For the bearing-capacity solution,

= 2 (D} — DON, we, + W, 4.14
Qu174(b )cu)cu P ( )

The shear-strength reduction factor w in Eq. (4.14) consid-
ers disturbance effects and ranges from !/, (slurry construc-
tion) to 3, (dry construction). The ¢, represents the
undrained shear strength of the soil just above the bell sur-
face, and N, is a bearing-capacity factor.
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The failure surface of the friction cylinder model is con-
servatively assumed to be vertical, starting from the base of
the bell. Q can then be determined for both cohesive and
cohesionless soils from

Qul = ’beLfl‘_ll + ‘4{v + Wp (415)

where f,, is the average ultimate skin-friction stress in ten-
sion developed on the failure plane; that is, f,, = 0.8c, for
clays or Ko, tan ¢ for sands. W, and W, represent the
weight of soil contained within the failure plane and the shaft
weight, respectively.

SHAFT RESISTANCE IN
COHESIONLESS SOILS

The shaft resistance stress jﬂ is a function of the soil-shaft
friction angle 8, degree, and an empirical lateral earth-
pressure coefficient K:

f.=Kol tand =7, (4.16)

At displacement-pile penetrations of 10 to 20 pile diam-
eters (loose to dense sand), the average skin friction reaches
a limiting value f;. Primarily depending on the relative den-
sity and texture of the soil, f; has been approximated conser-
vatively by using Eq. (4.16) to calculate f;.

For relatively long piles in sand, K is typically taken in
the range of 0.7 to 1.0 and 3§ is taken to be about ¢ — 5,
where ¢ is the angle of internal friction, degree. For piles
less than 50 ft (15.2 m) long, K is more likely to be in the
range of 1.0 to 2.0, but can be greater than 3.0 for tapered
piles.
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Empirical procedures have also been used to evaluate f;
from in situ tests, such as cone penetration, standard pen-
etration, and relative density tests. Equation (4.17), based
on standard penetration tests, as proposed by Meyerhof, is
generally conservative and has the advantage of simplicity:

(4.17)

where N = average standard penetration resistance within
the embedded length of pile and f, is given in tons/ft%.
(Meyerhof, G. G., “Bearing Capacity and Settlement of Pile
Foundations,” ASCE Journal of Geotechnical Engineering
Division, 102(GT3):1976.)
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REINFORCED CONCRETE

When working with reinforced concrete and when design-
ing reinforced concrete structures, the American Concrete
Institute (ACI) Building Code Requirements for Reinforced
Concrete, latest edition, is widely used. Future references to
this document are denoted as the ACI Code. Likewise, pub-
lications of the Portland Cement Association (PCA) find
extensive use in design and construction of reinforced con-
crete structures.

Formulas in this chapter cover the general principles of
reinforced concrete and its use in various structural applica-
tions. Where code requirements have to be met, the reader
must refer to the current edition of the ACI Code previously
mentioned. Likewise, the PCA publications should also be
referred to for the latest requirements and recommendations.

WATER/CEMENTITIOUS MATERIALS RATIO

The water/cementitious (w/c) ratio is used in both tensile
and compressive strength analyses of Portland concrete
cement. This ratio is found from

where w,, = weight of mixing water in batch, 1b (kg); and
w. = weight of cementitious materials in batch, 1b (kg).
The ACI Code lists the typical relationship between the
w/c ratio by weight and the compressive strength of concrete.
Ratios for non-air-entrained concrete vary between 0.41 for
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a 28-day compressive strength of 6000 1b/in? (41 MPa) and
0.82 for 2000 lb/in> (14 MPa). Air-entrained concrete w/c
ratios vary from 0.40 to 0.74 for 5000 1b/in> (34 MPa) and
2000 Ib/in? (14 MPa) compressive strength, respectively. Be
certain to refer to the ACI Code for the appropriate w/c
value when preparing designs or concrete analyses.

Further, the ACI Code also lists maximum w/c ratios
when strength data are not available. Absolute w/c ratios by
weight vary from 0.67 to 0.38 for non-air-entrained concrete
and from 0.54 to 0.35 for air-entrained concrete. These
values are for a specified 28-day compressive strength f; in
Ib/in?> or MPa, of 2500 Ib/in®> (17 MPa) to 5000 Ib/in?
(34 MPa). Again, refer to the ACI Code before making any
design or construction decisions.

Maximum w/c ratios for a variety of construction condi-
tions are also listed in the ACI Code. Construction conditions
include concrete protected from exposure to freezing and
thawing; concrete intended to be watertight; and concrete
exposed to deicing salts, brackish water, seawater, etc. Appli-
cation formulas for w/c ratios are given later in this chapter.

JOB MIX CONCRETE VOLUME

A trial batch of concrete can be tested to determine how
much concrete is to be delivered by the job mix. To deter-
mine the volume obtained for the job, add the absolute
volume V, of the four components—cements, gravel, sand,
and water.

Find the V,, for each component from

W,
V,=——t—
SGW,
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where V, = absolute volume, ft* (m?)
W, = weight of material, 1b (kg)
SG = specific gravity of the material

w, = density of water at atmospheric conditions
(62.4 1b/ft%; 1000 kg/m?)

Then, job yield equals the sum of V, for cement, gravel,
sand, and water.

MODULUS OF ELASTICITY OF CONCRETE

The modulus of elasticity of concrete E—adopted in modi-
fied form by the ACI Code—is given by
E, = 33w'Vf/  Ib/in® in USCS units
= 0.043w!SVf/  MPa in SI units

With normal-weight, normal-density concrete these two
relations can be simplified to

E, = 57,000V, Ib/in® in USCS units
= 4700Vf, MPa in SI units

where E, = modulus of elasticity of concrete, Ib/in> (MPa);
and f! = specified 28-day compressive strength of con-
crete, 1b/in> (MPa).
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TENSILE STRENGTH OF CONCRETE

The tensile strength of concrete is used in combined-stress
design. In normal-weight, normal-density concrete the ten-
sile strength can be found from

f. =75V Ib/in?in USCS units
f.=0.7Vf/ MPain SI units

REINFORCING STEEL

American Society for Testing and Materials (ASTM) speci-
fications cover renforcing steel. The most important proper-
ties of reinforcing steel are

. Modulus of elasticity E,, Ib/in> (MPa)
Tensile strength, 1b/in? (MPa)

Yield point stress f,, 1b/in? (MPa)

. Steel grade designation (yield strength)

(S R SR

. Size or diameter of the bar or wire

CONTINUOUS BEAMS
AND ONE-WAY SLABS

The ACI Code gives approximate formulas for finding
shear and bending moments in continuous beams and one-
way slabs. A summary list of these formulas follows. They
are equally applicable to USCS and SI units. Refer to the
ACI Code for specific applications of these formulas.

TLFeBOOK



152 CHAPTER FIVE

For Positive Moment

End spans
If discontinuous end is unrestrained wi? /11
If discontinuous end is integral with the support — wi2/14

1

Interior spans wi2 /16

For Negative Moment

Negative moment at exterior face of first interior

support
Two spans wi%/9
More than two spans wi2/10

Negative moment at other faces of interior supports ~ wi2 /11

Negative moment at face of all supports for
(a) slabs with spans not exceeding 10 ft (3 m)
and (b) beams and girders where the ratio of
sum of column stiffness to beam stiffness
exceeds 8 at each end of the span wi2 /12

Negative moment at interior faces of exterior
supports, for members built integrally with
their supports

Where the support is a spandrel beam or girder wi? /24
Where the support is a column wi2/16

1

Shear Forces

Shear in end members at first interior support 1.15wl, /2
Shear at all other supports wl, /2
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End Reactions

Reactions to a supporting beam, column, or wall are obtained
as the sum of shear forces acting on both sides of the support.

DESIGN METHODS FOR BEAMS,
COLUMNS, AND OTHER MEMBERS

A number of different design methods have been used for
reinforced concrete construction. The three most common
are working-stress design, ultimate-strength design, and
strength design method. Each method has its backers and
supporters. For actual designs the latest edition of the ACI
Code should be consulted.

Beams

Concrete beams may be considered to be of three principal
types: (1) rectangular beams with tensile reinforcing only,
(2) T beams with tensile reinforcing only, and (3) beams
with tensile and compressive reinforcing.

Rectangular Beams with Tensile Reinforcing Only. This
type of beam includes slabs, for which the beam width b
equals 12 in (305 mm) when the moment and shear are
expressed per foot (m) of width. The stresses in the con-
crete and steel are, using working-stress design formulas,

2M M M

fe =% T A0 pivd
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where b = width of beam [equals 12 in (304.8 mm) for
slab], in (mm)

d = effective depth of beam, measured from com-
pressive face of beam to centroid of tensile
reinforcing (Fig. 5.1), in (mm)

M = bending moment, 1b-in (k- Nm)

f. = compressive stress in extreme fiber of concrete,

Ib/in* (MPa)
f. = stress in reinforcement, 1b/in> (MPa)
A, = cross-sectional area of tensile reinforcing,

in? (mm?)

J = ratio of distance between centroid of compres-
sion and centroid of tension to depth d

k = ratio of depth of compression area to depth d

p = ratio of cross-sectional area of tensile reinforcing
to area of the beam (= A,/bd)

For approximate design purposes, j may be assumed to be
7fs and k, /5. For average structures, the guides in Table 5.1 to
the depth d of a reinforced concrete beam may be used.

For a balanced design, one in which both the concrete
and the steel are stressed to the maximum allowable stress,
the following formulas may be used:

bdzzﬂ
K

| .
K= 7]%/ = pfiJ

Values of K, k, j, and p for commonly used stresses are
given in Table 5.2.
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FIGURE 5.1 Rectangular concrete beam with tensile reinforcing only.
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TABLE 5.1 Guides to Depth d of
Reinforced Concrete Beam®

Member d
Roof and floor slabs 1125
Light beams 115

Heavy beams and girders 1/12-1/10

I is the span of the beam or slab in inches
(millimeters). The width of a beam should be
at least //32.

T Beams with Tensile Reinforcing Only. When a concrete
slab is constructed monolithically with the supporting con-
crete beams, a portion of the slab acts as the upper flange of
the beam. The effective flange width should not exceed (1)
one-fourth the span of the beam, (2) the width of the web
portion of the beam plus 16 times the thickness of the slab,
or (3) the center-to-center distance between beams. T beams
where the upper flange is not a portion of a slab should have
a flange thickness not less than one-half the width of the web
and a flange width not more than four times the width of the
web. For preliminary designs, the preceding formulas given
for rectangular beams with tensile reinforcing only can be
used, because the neutral axis is usually in, or near, the
flange. The area of tensile reinforcing is usually critical.

TABLE 5.2 Coefficients K, k, j, p for Rectangular Sections’

A n 1 K k J p
2000 15 900 175 0458  0.847  0.0129
2500 12 1125 218 0458 0847  0.0161

3000 10 1350 262 0.458 0.847 0.0193
3750 8 1700 331 0.460 0.847 0.0244

f, = 16,000 1b/in? (110 MPa).
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Beams with Tensile and Compressive Reinforcing. Beams
with compressive reinforcing are generally used when the
size of the beam is limited. The allowable beam dimensions
are used in the formulas given earlier to determine the
moment that could be carried by a beam without compres-
sive reinforcement. The reinforcing requirements may then
be approximately determined from

_sM M-
Cfd T nfd

where A, = total cross-sectional area of tensile reinforcing,
in? (mm?)

A, = cross-sectional area of compressive reinforcing,
in? (mm?)

M = total bending moment, 1b-in (K-Nm)

M’ = bending moment that would be carried by beam
of balanced design and same dimensions with
tensile reinforcing only, 1b-in (K-Nm)

n = ratio of modulus of elasticity of steel to that of
concrete

Checking Stresses in Beams. Beams designed using the
preceding approximate formulas should be checked to
ensure that the actual stresses do not exceed the allowable,
and that the reinforcing is not excessive. This can be accom-
plished by determining the moment of inertia of the beam.
In this determination, the concrete below the neutral axis
should not be considered as stressed, whereas the reinforc-
ing steel should be transformed into an equivalent concrete
section. For tensile reinforcing, this transformation is made
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by multiplying the area A, by n, the ratio of the modulus of
elasticity of steel to that of concrete. For compressive rein-
forcing, the area A, is multiplied by 2(n — 1). This factor
includes allowances for the concrete in compression replaced
by the compressive reinforcing and for the plastic flow of
concrete. The neutral axis is then located by solving

hbe? + 2(n — DA, = nAyc,

for the unknowns c,, ¢, and ¢, (Fig. 5.2). The moment of
inertia of the transformed beam section is

I ="bc} + 2(n — DA 2 + nA,c?
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FIGURE 5.2 Transformed section of concrete beam.
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and the stresses are

Mec. 2nMc,, nMc,

L= k=T A=

where f., f.., f = actual unit stresses in extreme fiber of con-
crete, in compressive reinforcing steel,
and in tensile reinforcing steel, respectively,
Ib/in* (MPa)

C. Cy, €5 = distances from neutral axis to face of con-
crete, to compressive reinforcing steel, and
to tensile reinforcing steel, respectively,
in (mm)

I = moment of inertia of transformed beam
section, in* (mm®)

b = beam width, in (mm)
and A, A, M, and n are as defined earlier in this chapter.

Shear and Diagonal Tension in Beams. The shearing unit
stress, as a measure of diagonal tension, in a reinforced con-
crete beam is

where v = shearing unit stress, 1b/in*> (MPa)
V = total shear, Ib (N)

b = width of beam (for T beam use width of stem),
in (mm)

d = effective depth of beam
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If the value of the shearing stress as computed earlier
exceeds the allowable shearing unit stress as specified by
the ACI Code, web reinforcement should be provided.
Such reinforcement usually consists of stirrups. The cross-
sectional area required for a stirrup placed perpendicular to
the longitudinal reinforcement is

_(V=V')s
= 7]!;-61

where A, = cross-sectional area of web reinforcement in
distance s (measured parallel to longitudinal
reinforcement), in> (mm?)

A,

f, = allowable unit stress in web reinforcement,
Ib/in> (MPa)

V = total shear, Ib (N)

V' = shear that concrete alone could carry (= v.bd),
Ib (N)

s = spacing of stirrups in direction parallel to that
of longitudinal reinforcing, in (mm)

d = effective depth, in (mm)

Stirrups should be so spaced that every 45° line extend-
ing from the middepth of the beam to the longitudinal
tension bars is crossed by at least one stirrup. If the total
shearing unit stress is in excess of 3 Vf! Ib/in?> (MPa), every
such line should be crossed by at least two stirrups. The shear
stress at any section should not exceed 5 Vf! 1b/in> (MPa).

Bond and Anchorage for Reinforcing Bars. In beams in
which the tensile reinforcing is parallel to the compression
face, the bond stress on the bars is
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TABLE 5.3 Allowable Bond Stresses’

Horizontal bars with more
than 12 in (30.5 mm) of concrete
cast below the bar*

Other bars*

Tension bars with sizes and
deformations conforming to
ASTM A305

Tension bars with sizes and
deformations conforming to
ASTM A408

Deformed compression bars

Plain bars

34

— or 350, whichever is less

21V

6.5\/]? or 400, whichever is less

1.7\/]? or 160, whichever is less

48V

— or 500, whichever is less

g

6.5\/}? or 400, whichever is less

2.4\/}? or 160, whichever is less

flb/in2 (X 0.006895 = MPa).

# £l = compressive strength of concrete, 1b/in> (MPa); D = nominal diameter of bar, in (mm).
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Vv
u=
JdZq

where u = bond stress on surface of bar, 1b/in> (MPa)
V = total shear, Ib (N)
d = effective depth of beam, in (mm)

3, = sum of perimeters of tensile reinforcing bars,
in (mm)

For preliminary design, the ratio j may be assumed to be
7/8. Bond stresses may not exceed the values shown in
Table 5.3.

Columns

The principal columns in a structure should have a mini-
mum diameter of 10 in (255 mm) or, for rectangular columns,
a minimum thickness of 8 in(203 mm) and a minimum gross
cross-sectional area of 96 in” (61,935 mm?).

Short columns with closely spaced spiral reinforcing
enclosing a circular concrete core reinforced with vertical
bars have a maximum allowable load of

P = A,0.25f + fip,)
where P = total allowable axial load, Ib (N)

A, = gross cross-sectional area of column, in? (mm?)

f = compressive strength of concrete, 1b/in? (MPa)
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[, = allowable stress in vertical concrete reinforcing,
Ib/in? (MPa), equal to 40 percent of the minimum
yield strength, but not to exceed 30,000 Ib/in?
(207 MPa)

P, = ratio of cross-sectional area of vertical rein-
forcing steel to gross area of column A,

The ratio p, should not be less than 0.01 or more than 0.08.
The minimum number of bars to be used is six, and the
minimum size is No. 5. The spiral reinforcing to be used in
a spirally reinforced column is

- oas (B )£

where p, = ratio of spiral volume to concrete-core volume
(out-to-out spiral)

A, = cross-sectional area of column core (out-to-
out spiral), in? (mm?)

f, = yield strength of spiral reinforcement, 1b/in?
(MPa), but not to exceed 60,000 1b/in® (413
MPa)

The center-to-center spacing of the spirals should not
exceed one-sixth of the core diameter. The clear spacing
between spirals should not exceed one-sixth the core diam-
eter, or 3 in (76 mm), and should not be less than 1.375 in
(35 mm), or 1.5 times the maximum size of coarse aggre-
gate used.

Short Columns with Ties. The maximum allowable load
on short columns reinforced with longitudinal bars and sepa-

rate lateral ties is 85 percent of that given earlier for spirally
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reinforced columns. The ratio p, for a tied column should not
be less than 0.01 or more than 0.08. Longitudinal reinforcing
should consist of at least four bars; minimum size is No. 5.

Long Columns. Allowable column loads where compres-
sion governs design must be adjusted for column length as
follows:

1. If the ends of the column are fixed so that a point of
contraflexure occurs between the ends, the applied axial
load and moments should be divided by R from (R can-
not exceed 1.0)

.006h
R =132 - 20000

2. If the relative lateral displacement of the ends of the
columns is prevented and the member is bent in a single
curvature, applied axial loads and moments should be
divided by R from (R cannot exceed 1.0)

0.008A
R =1.07 —

where 4 = unsupported length of column, in (mm)
r = radius of gyration of gross concrete area, in (mm)
= 0.30 times depth for rectangular column
= (.25 times diameter for circular column
R = long-column load reduction factor

Applied axial load and moment when tension governs
design should be similarly adjusted, except that R varies
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linearly with the axial load from the values given at the bal-
anced condition.

Combined Bending and Compression. The strength of
a symmetrical column is controlled by compression if the equiv-
alent axial load N has an eccentricity e in each principal direc-
tion no greater than given by the two following equations and by
tension if e exceeds these values in either principal direction.

For spiral columns,

e, = 043 p,mD, + 0.14¢

For tied columns,

e, = (0.67p,m + 0.17)d
where e = eccentricity, in (mm)
e, = maximum permissible eccentricity, in (mm)
N = eccentric load normal to cross section of column

P, = ratio of area of vertical reinforcement to gross
concrete area

m = £,/0.85f

D, = diameter of circle through centers of longitu-
dinal reinforcement, in (mm)

t = diameter of column or overall depth of col-
umn, in (mm)

d = distance from extreme compression fiber to
centroid of tension reinforcement, in (mm)

£, = yield point of reinforcement, 1b/in> (MPa)
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Design of columns controlled by compression is based
on the following equation, except that the allowable load N
may not exceed the allowable load P, given earlier, permit-
ted when the column supports axial load only:

A
Fa Fb FIJ

=1.0

where f, = axial load divided by gross concrete area,
Ib/in*> (MPa)

Joxs f»y = bending moment about x and y axes, divided by
section modulus of corresponding transformed
uncracked section, 1b/in> (MPa)

F, = allowable bending stress permitted for bend-

ing alone, Ib/in*> (MPa)

F,=0.34(1 + pm)f!

The allowable bending load on columns controlled by
tension varies linearly with the axial load from M, when the
section is in pure bending to M, when the axial load is N,,.

For spiral columns,
My = 0.12A,f,D,
For tied columns,
My = 0.40A,f(d — d')
where A, = total area of longitudinal reinforcement, in?> (mm?)

f, = yield strength of reinforcement, Ib/in* (MPa)

D, = diameter of circle through centers of longitu-
dinal reinforcement, in (mm)
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A, = area of tension reinforcement, in? (mm?)

d = distance from extreme compression fiber to
centroid of tension reinforcement, in (mm)

N, and M, are the axial load and moment at the balanced
condition (i.e., when the eccentricity e equals e, as deter-
mined). At this condition, N, and M, should be determined
from

M, = Nye,

When bending is about two axes,

M, M,
+
M Ox M, Oy

=1

where M, and M, are bending moments about the x and
y axes, and My, and M,, are the values of M, for bending
about these axes.

PROPERTIES IN THE HARDENED STATE

Strength is a property of concrete that nearly always is of
concern. Usually, it is determined by the ultimate strength of
a specimen in compression, but sometimes flexural or tensile
capacity is the criterion. Because concrete usually gains
strength over a long period of time, the compressive strength
at 28 days is commonly used as a measure of this property.

The 28-day compressive strength of concrete can be
estimated from the 7-day strength by a formula proposed
by W. A. Slater:

Sys = S5 + 30V,
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where S,; = 28-day compressive strength, 1b/in> (MPa), and
S; = 7-day strength, Ib/in> (MPa).

Concrete may increase significantly in strength after 28 days,
particularly when cement is mixed with fly ash. Therefore, spec-
ification of strengths at 56 or 90 days is appropriate in design.

Concrete strength is influenced chiefly by the water/cement
ratio; the higher this ratio is, the lower the strength. The rela-
tionship is approximately linear when expressed in terms of
the variable C/W, the ratio of cement to water by weight. For
a workable mix, without the use of water reducing admixtures,

C
Sys = 2700 — — 760
w

Tensile strength of concrete is much lower than com-
pressive strength and, regardless of the types of test, usually
has poor correlation with f;. As determined in flexural tests,
the tensile strength (modulus of rupture—not the true strength)
is about 7Vf, for the higher strength concretes and 10Vf,
for the lower strength concretes.

Modulus of elasticity E,, generally used in design for
concrete, is a secant modulus. In ACI 318, “Building Code
Requirements for Reinforced Concrete,” it is determined by

E, = w33V},

where w = weight of concrete, Ib/ft® (kg/m?); and f! = speci-
fied compressive strength at 28 days, Ib/in> (MPa). For
normal-weight concrete, with w = 145 1b/ft* (kg/m?),

E, = 57,000Vf,

The modulus increases with age, as does the strength.
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TENSION DEVELOPMENT LENGTHS

For bars and deformed wire in tension, basic development
length is defined by the equations that follow. For No. 11
and smaller bars,

| _ 0044,
= ey

vf!
where A, = area of bar, in?> (mm?)
f, = yield strength of bar steel, Ib/in* (MPa)

f! = 28-day compressive strength of concrete,
Ib/in* (MPa)

However, /, should not be less than 12 in (304.8 mm), except
in computation of lap splices or web anchorage.
For No. 14 bars,

5y

1, = 0.085—=

d \/fC’

For No. 18 bars,

Iy

1, = 0.125—=

‘ VI

and for deformed wire,

£y — 20,000 A, f
l;, = 0.03d = 10.02 —=—
d b .J.f;" Sl/l" ‘\/f;,

where A,, is the area, in> (mm?); and s,, is the spacing, in
(mm), of the wire to be developed. Except in computation of
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lap splices or development of web reinforcement, /,; should
not be less than 12 in (304.8 mm).

COMPRESSION DEVELOPMENT
LENGTHS

For bars in compression, the basic development length /, is
defined as

OOZﬂdb

but /, not be less than 8 in (20.3 cm) or 0.0003f,d,,.

= 0.0003d, f,

CRACK CONTROL OF
FLEXURAL MEMBERS

Because of the risk of large cracks opening up when rein-
forcement is subjected to high stresses, the ACI Code recom-
mends that designs be based on a steel yield strength f, no
larger than 80 ksi (551.6 MPa). When design is based on
a yield strength f, greater than 40 ksi (275.8 MPa), the cross
sections of maximum positive and negative moment should
be proportioned for crack control so that specific limits are
satisfied by

z=fVd.A

where f; = calculated stress, ksi (MPa), in reinforcement
at service loads
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d. = thickness of concrete cover, in (mm), meas-
ured from extreme tension surface to center of
bar closest to that surface

A = effective tension area of concrete, in> (mm?)
per bar. This area should be taken as that sur-
rounding main tension reinforcement, having
the same centroid as that reinforcement, multi-
plied by the ratio of the area of the largest bar
used to the total area of tension reinforcement

These limits are z = 175 kip/in (30.6 kN/mm) for interior
exposures and z = 145 kip/in (25.3 kN/mm) for exterior
exposures. These correspond to limiting crack widths of
0.016 to 0.013 in (0.406 to 0.33 mm), respectively, at the
extreme tension edge under service loads. In the equation
for z, f, should be computed by dividing the bending
moment by the product of the steel area and the internal
moment arm, but f; may be taken as 60 percent of the steel
yield strength without computation.

REQUIRED STRENGTH

For combinations of loads, the ACI Code requires that a
structure and its members should have the following ulti-
mate strengths (capacities to resist design loads and their
related internal moments and forces):

With wind and earthquake loads not applied,

U=14D + 1.7L

where D = effect of basic load consisting of dead load plus
volume change (shrinkage, temperature) and L = effect of
live load plus impact.
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When wind loads are applied, the largest of the preceed-
ing equation and the two following equations determine the
required strength:

U=0.75(1.4D + 1.7L + 1.7W)
U=09D + 1.3W

where W = effect of wind load.

If the structure can be subjected to earthquake forces E,
substitute 1.1E for W in the preceding equation.

Where the effects of differential settlement, creep, shrink-
age, or temperature change may be critical to the structure,
they should be included with the dead load D, and the
strength should be at least equal to

U=075(14D + 1.7L) = 1.4D + T)

where T = cumulative effects of temperature, creep,
shrinkage, and differential settlement.

DEFLECTION COMPUTATIONS AND
CRITERIA FOR CONCRETE BEAMS

The assumptions of working-stress theory may also be used
for computing deflections under service loads; that is, elastic-
theory deflection formulas may be used for reinforced-concrete
beams. In these formulas, the effective moment of inertia I,
is given by

M 3 M 3
3[4 =

where 1, = moment of inertia of the gross concrete section
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<
I

cracking moment

<
I

moment for which deflection is being computed
1., = cracked concrete (transformed) section

If y, is taken as the distance from the centroidal axis of the
gross section, neglecting the reinforcement, to the extreme sur-
face in tension, the cracking moment may be computed from

Il
Vi

M. =

cr

with the modulus of rupture of the concrete f, = 7.5V, f!.
The deflections thus calculated are those assumed to occur
immediately on application of load. Additional long-time
deflections can be estimated by multiplying the immediate
deflection by 2 when there is no compression reinforcement
or by 2 — 1.24/A; = 0.6, where A} is the area of compres-
sion reinforcement and A; is the area of tension reinforcement.

ULTIMATE-STRENGTH DESIGN
OF RECTANGULAR BEAMS WITH
TENSION REINFORCEMENT ONLY

Generally, the area A, of tension reinforcement in a rein-
forced-concrete beam is represented by the ratio p = A,/bd,
where b is the beam width and d is the distance from extreme
compression surface to the centroid of tension reinforce-
ment. At ultimate strength, the steel at a critical section of
the beam is at its yield strength f, if the concrete does not
fail in compression first. Total tension in the steel then will
be A,f, = pfybd. It is opposed, by an equal compressive force:
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0.85f/ba = 0.85f/bB,c
where f! = 28-day strength of the concrete, ksi (MPa)

a = depth of the equivalent rectangular stress
distribution

¢ = distance from the extreme compression sur-
face to the neutral axis

B, = a constant

Equating the compression and tension at the critical section
yields

_ b
c= d
0.85B, /!

The criterion for compression failure is that the maximum
strain in the concrete equals 0.003 in/in (0.076 mm/mm). In
that case,

0.003
PR L
fJE, + 0.003

where f, = steel stress, ksi (MPa)
E

s

= modulus of elasticity of steel

= 29,000 ksi (199.9 GPa)

Balanced Reinforcing

Under balanced conditions, the concrete reaches its maxi-
mum strain of 0.003 when the steel reaches its yield strength
/f,- This determines the steel ratio for balanced conditions:
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_085B.f, 87,000
f 87,000 + £,

Py

Moment Capacity

For such underreinforced beams, the bending-moment capac-
ity of ultimate strength is

M, = 0.90[bd*f/w(1 — 0.59w)]

~ 0.90 [Axfy (d - ;ﬂ

where o = pf,/f! and a = A, f,/0.85f,.

Shear Reinforcement

The ultimate shear capacity V, of a section of a beam equals
the sum of the nominal shear strength of the concrete V,
and the nominal shear strength provided by the reinforce-
ment V; thatis, V,, = V. + V.. The factored shear force V, on
a section should not exceed

SV, = (V. + V)

where ¢ = capacity reduction factor (0.85 for shear and
torsion). Except for brackets and other short cantilevers, the
section for maximum shear may be taken at a distance
equal to d from the face of the support.

The shear Vc carried by the concrete alone should not
exceed 2Vf' b, d, where bw is the width of the beam web
and d, the depth of the centroid of reinforcement. (As an
alternative, the maximum for Vc may be taken as
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M

u

. V,d
vV, = <1.9 VE +2500p, — )bwd

=35Vi'b,d

where p,, = A/b,d and V, and M, are the shear and bend-
ing moment, respectively, at the section considered, but M,
should not be less than V,d.)

When V, is larger than ¢V, the excess shear has to be
resisted by web reinforcement.

The area of steel required in vertical stirrups, in? (mm?),
per stirrup, with a spacing s, in (mm), is

V.S
A, ==
fid

where f, = yield strength of the shear reinforcement. A, is
the area of the stirrups cut by a horizontal plane. V, should
not exceed 8Vf/b,d in sections with web reinforcement,
and f, should not exceed 60 ksi (413.7 MPa). Where shear
reinforcement is required and is placed perpendicular to the
axis of the member, it should not be spaced farther apart
than 0.5d, or more than 24 in (609.6 mm) ¢ to c. When V|
exceeds 4Vf! b,,d however, the maximum spacing should
be limited to 0.25d.

Alternatively, for practical design, to indicate the stirrup
spacing s for the design shear V,, stirrup area A,, and geom-
etry of the member b,, and d,

Avdafyd
V, = 2dVf! b,d

The area required when a single bar or a single group of
parallel bars are all bent up at the same distance from the sup-
port at angle « with the longitudinal axis of the member is
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Vs
fysina

A, =

in which V, should not exceed 3Vf/ b, d. A, is the area cut
by a plane normal to the axis of the bars. The area required
when a series of such bars are bent up at different distances
from the support or when inclined stirrups are used is

A = Vs
" (sina + cos a)f,d

A minimum area of shear reinforcement is required in
all members, except slabs, footings, and joists or where
V, is less than 0.5V...

Development of Tensile Reinforcement

At least one-third of the positive-moment reinforcement in
simple beams and one-fourth of the positive-moment rein-
forcement in continuous beams should extend along the same
face of the member into the support, in both cases, at least 6 in
(152.4 mm) into the support. At simple supports and at points
of inflection, the diameter of the reinforcement should be limi-
ted to a diameter such that the development length /, satisfies

M,
+ 1,
Vu

I, =
where M, = computed flexural strength with all reinforc-
ing steel at section stressed to f,
V, = applied shear at section

[, = additional embedment length beyond inflec-
tion point or center of support
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At an inflection point, /, is limited to a maximum of d, the
depth of the centroid of the reinforcement, or 12 times the
reinforcement diameter.

Hooks on Bars

The basic development length for a hooked bar with f, = 60
ksi (413.7 MPa) is defined as
12004,
by = Vi

where d, is the bar diameter, in (mm), and f is the 28-day
compressive strength of the concrete, 1b/in? (MPa).

WORKING-STRESS DESIGN OF
RECTANGULAR BEAMS WITH
TENSION REINFORCEMENT ONLY

From the assumption that stress varies across a beam sec-
tion with the distance from the neutral axis, it follows that

nf. k
I 1 —k

where 7 = modular ratio E,/E,

E, = modulus of elasticity of steel reinforcement,
ksi (MPa)

E. = modulus of elasticity of concrete, ksi (MPa)
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f. = compressive stress in extreme surface of con-
crete, ksi (MPa)
f; = stress in steel, ksi (MPa)

kd = distance from extreme compression surface to
neutral axis, in (mm)

d = distance from extreme compression to cen-
troid of reinforcement, in (mm)

When the steel ratio p = A,/bd, where A; = area of ten-
sion reinforcement, in’> (mm?), and b = beam width, in
(mm), is known, k can be computed from

k =V2np + (np)> — np

Wherever positive-moment steel is required, p should be at
least 200/f,, where f, is the steel yield stress. The distance jd
between the centroid of compression and the centroid of
tension, in (mm), can be obtained from

j=1-%
3
Allowable Bending Moment
The moment resistance of the concrete, in-kip (k- Nm) is
M, ="/, fkjbd* = K bd*
where K, = '/, f.kj. The moment resistance of the steel is
M, = f.A,jd = f,pjbd*= K,jbd*

where K, = f,pj.
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Allowable Shear

The nominal unit shear stress acting on a section with shear
Vis

14

"7 bd
Allowable shear stresses are 55 percent of those for
ultimate-strength design. Otherwise, designs for shear by
the working-stress and ultimate-strength methods are the
same. Except for brackets and other short cantilevers, the
section for maximum shear may be taken at a distance d
from the face of the support. In working-stress design, the
shear stress v, carried by the concrete alone should not exceed
1.1 V£!. (As an alternative, the maximum for v, may be taken
as Vf! + 1300pVd/M, with a maximum of 1.9 Vf/; f/ is
the 28-day compressive strength of the concrete, 1b/in’
(MPa), and M is the bending moment at the section but
should not be less than Vd.)

At cross sections where the torsional stress v, exceeds
0.825Vf!, v, should not exceed

LIVF,
V= —————
C YL+ (/1200
The excess shear v — v, should not exceed 4.4Vf, in sec-
tions with web reinforcement. Stirrups and bent bars should
be capable of resisting the excess shear V' =V — v_.bd.
The area required in the legs of a vertical stirrup, in?
(mm?), is
L
v ﬁ d
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where s = spacing of stirrups, in (mm); and f, = allowable
stress in stirrup steel, (Ib/in?) (MPa).

For a single bent bar or a single group of parallel bars
all bent at an angle o with the longitudinal axis at the same
distance from the support, the required area is

V/
B f, sin «

v

For inclined stirrups and groups of bars bent up at different
distances from the support, the required area is

vy

A =
" fod(sin a + cos o)

Stirrups in excess of those normally required are provided
each way from the cutoff for a distance equal to 75 percent
of the effective depth of the member. Area and spacing of
the excess stirrups should be such that

b,s

A, = 60 2

g

where A, = stirrup cross-sectional area, in?> (mm?)
b,, = web width, in (mm)

s = stirrup spacing, in (mm)

Jy

Stirrup spacing s should not exceed d/8[3,, where B, is
the ratio of the area of bars cut off to the total area of ten-
sion bars at the section and d is the effective depth of the
member.

yield strength of stirrup steel, (Ib/in?) (MPa)
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ULTIMATE-STRENGTH DESIGN OF
RECTANGULAR BEAMS WITH
COMPRESSION BARS

The bending-moment capacity of a rectangular beam with
both tension and compression steel is

M, = 0.90 [(AS —A)f, (d - %) + AL (d - d/)]

where a = depth of equivalent rectangular compressive
stress distribution

= (A, — ADAIfID
b = width of beam, in (mm)

d = distance from extreme compression surface to
centroid of tensile steel, in (mm)

d' = distance from extreme compression surface to
centroid of compressive steel, in (mm)

A, = area of tensile steel, in?> (mm?)

A, = area of compressive steel, in? (mm?)
f, = yield strength of steel, ksi (MPa)

f! = 28-day strength of concrete, ksi (MPa)

This is valid only when the compressive steel reaches f, and
occurs when

fid' 87,000
f,d 87,000 — f,

(b — p) = 0.858,
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where p = A,/bd
p = Al/bd

3, = aconstant

WORKING-STRESS DESIGN OF
RECTANGULAR BEAMS WITH
COMPRESSION BARS

The following formulas, based on the linear variation of
stress and strain with distance from the neutral axis, may be
used in design:

1
1 + f,/nf.
where f, = stress in tensile steel, ksi (MPa)

f. = stress in extreme compression surface, ksi
(MPa)

n = modular ratio, E,/E,

o k-d
Y od—kd "

where f; = stress in compressive steel, ksi (MPa)

d = distance from extreme compression surface
to centroid of tensile steel, in (mm)

d' = distance from extreme compression surface
to centroid of compressive steel, in (mm)
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The factor 2 is incorporated into the preceding equation
in accordance with ACI 318, “Building Code Requirements
for Reinforced Concrete,” to account for the effects of
creep and nonlinearity of the stress—strain diagram for con-
crete. However, f; should not exceed the allowable tensile
stress for the steel.

Because total compressive force equals total tensile
force on a section,

C=C +C =
where C = total compression on beam cross section,
kip (N)

C, = total compression on concrete, kip (N) at
section

C, = force acting on compressive steel, kip (N)

T = force acting on tensile steel, kip (N)

fi k

Je o 2lp = pkd — d')/d — kd)]

where p = A,/bd and p' = A'/bd.
For reviewing a design, the following formulas may be
used:

d!
k =\/2n<p T ) +nip +p') = nlp +p)

(K3d 13) + dnp'd'Tk — (d'ld)]
K2+ dnp'lk — (d'd)]

z= jd:d*Z
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where jd is the distance between the centroid of compres-
sion and the centroid of the tensile steel. The moment
resistance of the tensile steel is

. ) M
M, = Tjd = A, f;jd f;:Tjd

where M is the bending moment at the section of beam
under consideration. The moment resistance in compres-
sion is

M —if ibd? |k + 2 ’<1— dl)
c 2 (7] np kd

B oM
jbd?(k + 2np[1 — d/kd)]}

Je

Computer software is available for the preceding calcu-
lations. Many designers, however, prefer the following approxi-
mate formulas:

1 kd
My = —f.bkd (d - —)

3
M =M—M,=2fAd~-d)

where M = bending moment

M. = moment-resisting capacity of compressive
steel

M, = moment-resisting capacity of concrete
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ULTIMATE-STRENGTH DESIGN OF
I AND T BEAMS

When the neutral axis lies in the flange, the member may be
designed as a rectangular beam, with effective width b and
depth d. For that condition, the flange thickness ¢ will be
greater than the distance ¢ from the extreme compression
surface to the neutral axis,

1.18wd
B

where [3; = constant
o = A, f,/bdf!
A, = area of tensile steel, in?> (mm?)
f, = yield strength of steel, ksi (MPa)

f! = 28-day strength of concrete, ksi (MPa)

When the neutral axis lies in the web, the ultimate moment
should not exceed

M, =0.90 [(AS — A, (d - %) +Agf, (d - ;)} (8.51)

where Ay = area of tensile steel required to develop com-
pressive strength of overhanging flange, in?
(mm?) = 0.85(b — b,)if!/f,

b,, = width of beam web or stem, in (mm)

a = depth of equivalent rectangular compressive
stress distribution, in (mm)

= (A, — Apf,/ 085 b,
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The quantity p,, — pyshould not exceed 0.75p,, where p, is
the steel ratio for balanced conditions p,, = A,/b,d, and
pf = As[/bwd.

WORKING-STRESS DESIGN OF
I AND T BEAMS

For T beams, effective width of compression flange is
determined by the same rules as for ultimate-strength
design. Also, for working-stress design, two cases may
occur: the neutral axis may lie in the flange or in the web.
(For negative moment, a T beam should be designed as a
rectangular beam with width b equal to that of the stem.)

If the neutral axis lies in the flange, a T or I beam may
be designed as a rectangular beam with effective width b. If
the neutral axis lies in the web or stem, an I or T beam may
be designed by the following formulas, which ignore the
compression in the stem, as is customary:

N
1+ £, Inf,

where kd = distance from extreme compression surface
to neutral axis, in (mm)

d = distance from extreme compression surface
to centroid of tensile steel, in (mm)

f, = stress in tensile steel, ksi (MPa)

f. = stress in concrete at extreme compression
surface, ksi (MPa)
n = modular ratio = E/E,
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Because the total compressive force C equals the total
tension 7,

C=Ytroma-nt—r-as
2 e kd sJs

2ndA, + bt?

== A+ 2br

where A; = area of tensile steel, in> (mm?); and ¢ = flange
thickness, in (mm).

The distance between the centroid of the area in com-
pression and the centroid of the tensile steel is

t(3kd — 2t)

d=d-7 7=
J Lt T R0k - 0

The moment resistance of the steel is
M, = Tjd + A, f;jd

The moment resistance of the concrete is
=—— (2kd — 1)
In design, M, and M, can be approximated by

t

MSZAsfs<d*7>
M_L b(d—L>
c_2f;‘t 2
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derived by substituting d — ¢t/2 for jd and f./2 for
f.(1 — t/2kd), the average compressive stress on the section.

ULTIMATE-STRENGTH DESIGN
FOR TORSION

When the ultimate torsion 7, is less than the value calcu-
lated from the 7, equation that follows, the area A, of shear
reinforcement should be at least

A =508

v
y

However, when the ultimate torsion exceeds 7, calcu-
lated from the T, equation that follows, and where web
reinforcement is required, either nominally or by calcula-
tion, the minimum area of closed stirrups required is

500,

A, + 24, =
I

where A, is the area of one leg of a closed stirrup resisting
torsion within a distance s.

Torsion effects should be considered whenever the ulti-
mate torsion exceeds

T,=d (o.Sw/]? 2x2y)

where ¢ = capacity reduction factor = 0.85

~
|

= ultimate design torsional moment
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3x%y = sum for component rectangles of section of
product of square of shorter side and longer
side of each rectangle (where T section applies,
overhanging flange width used in design should
not exceed three times flange thickness)

The torsion 7, carried by the concrete alone should not
exceed

_ 0.8\/]? X%y
V1 + (0.4V,/C,T,)>
where C, = b, d/2x?y.

Spacing of closed stirrups for torsion should be com-
puted from

c

_ Ard)f;ratxlyl
(Tu - ¢TC)

where A, = area of one leg of closed stirrup

0.66 + 0.33y,/x; but not more than 1.50

o
Jfy = yield strength of torsion reinforcement

x; = shorter dimension ¢ to ¢ of legs of closed
stirrup

vy, = longer dimension ¢ to ¢ of legs of closed
stirrup

The spacing of closed stirrups, however, should not exceed
(x; + y)/4 or 12 in (304.8 mm). Torsion reinforcement
should be provided over at least a distance of d + b beyond
the point where it is theoretically required, where b is the
beam width.
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At least one longitudinal bar should be placed in each cor-
ner of the stirrups. Size of longitudinal bars should be at least
No. 3, and their spacing around the perimeters of the stirrups
should not exceed 12 in (304.8 mm). Longitudinal bars larger
than No. 3 are required if indicated by the larger of the values
of Al computed from the following two equations:

+
Al =24, 70
N

Al — [ 400w < T, )
5y (T, + V,/3C)

— 2At:|<XI + Vi >
N

In the second of the preceding two equations 50b,,s/f, may
be substituted for 2A,.
The maximum allowable torsion is 7, = $5T..

WORKING-STRESS DESIGN FOR TORSION

Torsion effects should be considered whenever the torsion
T due to service loads exceeds

T = 0.55(0.5 f/ Zx%y)

where 2a%y = sum for the component rectangles of the sec-
tion of the product of the square of the shorter side and the
longer side of each rectangle. The allowable torsion stress
on the concrete is 55 percent of that computed from the
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preceding 7, equation. Spacing of closed stirrups for tor-

sion should be computed from

7 3A, 0, )11,

(Vz - Vtc)szy

where A, = area of one leg of closed stirrup

0.33
= 0.66 + 7)71, but not more than 1.50
X

R
I

allowable torsion stress on concrete

=~
s
Il

x; = shorter dimension ¢ to ¢ of legs of closed
stirrup

vy, = longer dimension ¢ to ¢ of legs of closed
stirrup

FLAT-SLAB CONSTRUCTION

Slabs supported directly on columns, without beams or
girders, are classified as flat slabs. Generally, the columns
flare out at the top in capitals (Fig. 5.3). However, only the
portion of the inverted truncated cone thus formed that lies
inside a 90° vertex angle is considered effective in resisting
stress. Sometimes, the capital for an exterior column is a
bracket on the inner face.

The slab may be solid, hollow, or waffle. A walffle slab
usually is the most economical type for long spans, although
formwork may be more expensive than for a solid slab. A
waffle slab omits much of the concrete that would be in ten-
sion and thus is not considered effective in resisting stresses.
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FIGURE 5.3 Concrete flat slab: (a) Vertical section through drop panel and column at a support. (b) Plan view

indicates division of slab into column and middle strips.
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To control deflection, the ACI Code establishes minimum
thicknesses for slabs, as indicated by the following equation:

where &

5

E(‘b

Ib_

1,0.8 + f,/200,000)
36 + SB[, — 0.12(1 + 1/B)]

_ 1,(0.8 + £,/200,000)
- 36 + 9B

slab thickness, in (mm)
length of clear span in long direction, in (mm)
yield strength of reinforcement, ksi (MPa)

ratio of clear span in long direction to clear
span in the short direction

average value of a for all beams on the edges
of a panel

ratio of flexural stiffness E_, 1, of beam section
to flexural stiffness E./;, of width of slab
bounded laterally by centerline of adjacent
panel, if any, on each side of beam

modulus of elasticity of beam concrete

= modulus of elasticity of slab concrete

moment of inertia about centroidal axis of
gross section of beam, including that portion of
slab on each side of beam that extends a dis-
tance equal to the projection of the beam above
or below the slab, whichever is greater, but not
more than four times slab thickness
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I, = moment of inertia about centroidal axis of
gross section of slab = /312 times slab width
specified in definition of o

Slab thickness &, however, need not be larger than (/,/36)
(0.8 + £,/200,000).

FLAT-PLATE CONSTRUCTION

Flat slabs with constant thickness between supports are
called flat plates. Generally, capitals are omitted from the
columns.

Exact analysis or design of flat slabs or flat plates is very
complex. It is common practice to use approximate methods.
The ACI Code presents two such methods: direct design and
equivalent frame.

In both methods, a flat slab is considered to consist of
strips parallel to column lines in two perpendicular direc-
tions. In each direction, a column strip spans between
columns and has a width of one-fourth the shorter of the
two perpendicular spans on each side of the column center-
line. The portion of a slab between parallel column strips in
each panel is called the middle strip (see Fig. 5.3).

Direct Design Method
This may be used when all the following conditions exist:

The slab has three or more bays in each direction.
Ratio of length to width of panel is 2 or less.
Loads are uniformly distributed over the panel.
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Ratio of live to dead load is 3 or less.

Columns form an approximately rectangular grid
(10 percent maximum offset).

Successive spans in each direction do not differ by more
than one-third of the longer span.

When a panel is supported by beams on all sides, the
relative stiffness of the beams satisfies

2
o.zsﬂ<§i>ss

Q 1

where o; = a in direction of /;

a, = « in direction of /,

=
|

= relative beam stiffness defined in the preced-
ing equation

[, = span in the direction in which moments are
being determined, ¢ to ¢ of supports

I, = span perpendicular to /;, ¢ to ¢ of supports

The basic equation used in direct design is the total
static design moment in a strip bounded laterally by the cen-
terline of the panel on each side of the centerline of the
supports:

lel%
Mo =
8

where w = uniform design load per unit of slab area and
1, = clear span in direction moments are being determined.

The strip, with width /,, should be designed for bending
moments for which the sum in each span of the absolute
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values of the positive and average negative moments equals
or exceeds M,,.

1. The sum of the flexural stiffnesses of the columns above
and below the slab XK, should be such that

2K, _
A = = Oy
COEK Ky ™
where K. = flexural stiffness of column = E_ .
E.. = modulus of elasticity of column concrete

I. = moment of inertia about centroidal axis of
gross section of column

KS = E(‘S[S
K, = E,l,

oyin = minimum value of o, as given in engineering
handbooks

2. If the columns do not satisfy condition 1, the design
positive moments in the panels should be multiplied by
the coefficient:

8S:1+2_B”<1— °‘”>
4+ B,

SHEAR IN SLABS

Slabs should also be investigated for shear, both beam type
and punching shear. For beam-type shear, the slab is considered
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as a thin, wide rectangular beam. The critical section for
diagonal tension should be taken at a distance from the
face of the column or capital equal to the effective depth d
of the slab. The critical section extends across the full
width b of the slab. Across this section, the nominal shear
stress v, on the unreinforced concrete should not exceed
the ultimate capacity 2Vf.! or the allowable working stress
1.1Vf/, where £ is the 28-day compressive strength of the
concrete, 1b/in> (MPa).

Punching shear may occur along several sections
extending completely around the support, for example,
around the face of the column or column capital or around
the drop panel. These critical sections occur at a distance
d/2 from the faces of the supports, where d is the effective
depth of the slab or drop panel. Design for punching shear
should be based on

PV, = bV, + Vy)

where ¢ = capacity reduction factor (0.85 for shear and
torsion), with shear strength V, taken not larger than the
concrete strength V., calculated from

Vv, = <2 + Bi> Vi, b,d =4t byd

where b, = perimeter of critical section and 3, = ratio of
long side to short side of critical section.

However, if shear reinforcement is provided, the allow-
able shear may be increased a maximum of 50 percent if
shear reinforcement consisting of bars is used and increased
a maximum of 75 percent if shearheads consisting of two
pairs of steel shapes are used.

Shear reinforcement for slabs generally consists of bent
bars and is designed in accordance with the provisions for
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beams with the shear strength of the concrete at critical sec-
tions taken as 2Vf, b,d at ultimate strength and V, < 6Vf!h,d.
Extreme care should be taken to ensure that shear reinforce-
ment is accurately placed and properly anchored, especially in
thin slabs.

COLUMN MOMENTS

Another important consideration in design of two-way slab
systems is the transfer of moments to columns. This is gener-
ally a critical condition at edge columns, where the unbal-
anced slab moment is very high due to the one-sided panel.

The unbalanced slab moment is considered to be trans-
ferred to the column partly by flexure across a critical sec-
tion, which is d/2 from the periphery of the column, and
partly by eccentric shear forces acting about the centroid of
the critical section.

That portion of unbalanced slab moment M, transferred
by the eccentricity of the shear is given by vy, M,:

1
v, =1 TN
BWE
3)V b,

where b, = width, in (mm), of critical section in the span
direction for which moments are being computed; and
b, = width, in (mm), of critical section in the span direc-
tion perpendicular to b;.

As the width of the critical section resisting moment
increases (rectangular column), that portion of the unbal-
anced moment transferred by flexure also increases. The
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maximum factored shear, which is determined by combin-
ing the vertical load and that portion of shear due to the
unbalanced moment being transferred, should not exceed
®V,, with V, given by preceding the V, equation. The shear
due to moment transfer can be determined at the critical
section by treating this section as an analogous tube with
thickness d subjected to a bending moment vy, M,,.

The shear stress at the crack, at the face of the column
or bracket support, is limited to 0.2, or a maximum of 800
A., where A, is the area of the concrete section resisting
shear transfer.

The area of shear-friction reinforcement A, required in addi-
tion to reinforcement provided to take the direct tension due to
temperature changes or shrinkage should be computed from

V
Axf _
bfy

where V, is the design shear, kip (kN), at the section; f, is
the reinforcement yield strength, but not more than 60 ksi
(413.7 MPa); and p, the coefficient of friction, is 1.4 for
monolithic concrete, 1.0 for concrete placed against hard-
ened concrete, and 0.7 for concrete placed against structural
rolled-steel members. The shear-friction reinforcement should
be well distributed across the face of the crack and properly
anchored at each side.

SPIRALS

This type of transverse reinforcement should be at least
34 in (9.5 mm) in diameter. A spiral may be anchored at
each of its ends by 1!/, extra turns of the spiral. Splices may
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be made by welding or by a lap of 48 bar diameters, but
at least 12 in (304.8 mm). Spacing (pitch) of spirals should
not exceed 3 in (76.2 mm), or be less than 1 in (25.4 mm).
Clear spacing should be at least 1/ times the maximum
size of coarse aggregate.

The ratio of the volume of spiral steel/volume of con-
crete core (out to out of spiral) should be at least

A ’
p, = 045 (—g - 1>f—r
A, f,

where A, = gross area of column

A. = core area of column measured to outside

of spiral
Jfy = spiral steel yield strength
f. = 28-day compressive strength of concrete

BRACED AND UNBRACED FRAMES

As a guide in judging whether a frame is braced or
unbraced, note that the commentary on ACI 318—283 indi-
cates that a frame may be considered braced if the bracing
elements, such as shear walls, shear trusses, or other means
resisting lateral movement in a story, have a total stiffness
at least six times the sum of the stiffnesses of all the
columns resisting lateral movement in that story.

The slenderness effect may be neglected under the two
following conditions:
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For columns braced against sidesway, when

ki, M,
— <34 -12—
r M,
where M, = smaller of two end moments on column as
determined by conventional elastic frame analysis, with
positive sign if column is bent in single curvature and nega-
tive sign if column is bent in double curvature; and M, =
absolute value of larger of the two end moments on column

as determined by conventional elastic frame analysis.

For columns not braced against sidesway, when
kl

—~ <22
.

LOAD-BEARING WALLS

These are subject to axial compression loads in addition to
their own weight and, where there is eccentricity of load or
lateral loads, to flexure. Load-bearing walls may be
designed in a manner similar to that for columns but includ-
ing the design requirements for non-load-bearing walls.

As an alternative, load-bearing walls may be designed
by an empirical procedure given in the ACI Code when the
eccentricity of the resulting compressive load is equal to or
less than one-sixth the thickness of the wall.

Load-bearing walls designed by either method should
meet the minimum reinforcing requirements for non-load-
bearing walls.

In the empirical method the axial capacity, kip (kN), of

the wall is
P, = 05501/ A, |1 — < it )2
" ' coe 32h
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where f! = 28-day compressive strength of concrete,

ksi (MPa)
A, = gross area of wall section, in? (mm?)
¢ = strength reduction factor = 0.70
l. = vertical distance between supports, in (mm)
h = overall thickness of wall, in (mm)

k = effective-length factor

For a wall supporting a concentrated load, the length of
wall effective for the supp